5: Chứng minh rằng đa thức P(x )= x3 + 2x2 - 3x + 1 có duy nhất một nghiệm nguyên.
Chứng minh rằng đa thức P:x=x3+2x2-3x+1=0 có duy nhất 1 nghiệm nguyên
ko có nghiệm nguyên nha bạn
Câu 1: Cho hai đa thức bậc ba:
P(x)=x3+2x2−7x−16, Q(x)=x3+3x2+8x−4
a) Chứng minh rằng mỗi đa thức đều có một nghiệm dương duy nhất
b) Gọi các nghiệm dương của P(x),Q(x) lần lượt là p,q. Chứng minh rằng: sqrtp−sqrtq=1
chứng minh rằng đa thức f(x)=x³-1 có duy nhất một nghiệm là x=1
f(x)=0
=>x^3-1=0
=>x^3=1
=>x=1
cho đa thức : h(x) = x^4 + 1/2x^2 + 2012 . chứng tỏ h(x) vô nghiệm
CTR đa thứa : 3x^2010 + x^1002+ 1 vô nghiệm
CTR đa Thức : M(x)= x^2 + 2x + 2 vô nghiệm
CTR đa thức : M(x) = x^2 + 2x + 1 chỉ có 1 nghiệm duy nhất tìm nghiệm duy nhất đó
CMR đa thức M(x) = x^2 - x + 5 không có nghiệm nguyên
Biết rằng α là nghiệm duy nhất của đa thức P(x) = x 3 + 9x − 5; và β là nghiệm thực duy nhất của đa thức Q(x) = x 3 − 15x 2 + 84x − 165. Chứng minh rằng α + β = 5.
Chứng minh rằng đa thức P(x)= x^3 - 3x + 5 không có nghiệm nguyên.
Lời giải:
Giả sử $P(x)$ có nghiệm $a$ nguyên. Khi đó:
$a^3-3a+5=0$
$\Leftrightarrow a(a^2-3)=-5$
Khi đó ta xét các TH sau:
TH1: $a=1; a^2-3=-5$
$\Leftrightarrow a=1$ và $a^2=2$ (vô lý)
TH2: $a=-1; a^2-3=5$
$\Leftrightarrow a=-1; a^2=8$ (vô lý)
TH3: $a=5; a^2-3=-1$
$\Leftrightarrow a=5$ và $a^2=2$ (vô lý)
TH4: $a=-5; a^2-3=1$
$\Leftrightarrow a=-5$ và $a^2=4$ (vô lý)
Vậy điều giả sử là sai, tức $P(x)$ không có nghiệm nguyên.
Câu 3. ( 2.0 điểm) Cho hai đa thức A = x3 - 2x2 + 5x – 1 ; B = x3 - 3x2 + 3x - 2
a) (TH6;7) (0.5+0.5) Tính P = A + B và Q = A – B
b) (VD 8) (0.5) So sánh bậc của đa thức P và đa thức Q
c) (VD 9) (0.5) Chứng tỏ x = -1 là một nghiệm của đa thức Q
Giups mình với ạ mình đang cần gấp
a: A=x^3-2x^2+5x-1
B=x^3-3x^2+3x-2
P=A+B=2x^3-5x^2+8x-3
Q=A-B=x^2+2x+1
b: Bậc của P lớn hơn Q
c: Q(-1)=(-1)^2+2*(-1)+1=0
=>x=-1 là nghiệm của Q
Bài 2: Cho hai đa thức
f(x) = 3x + x3 + 2x2 + 4
g(x) = x3 + 3x + 1 – x2
a) Sắp xếp các đa thức trên theo lũy thừa giảm dần của biến.
b) Tính f(x) + g(x) và f(x) – g(x)
c) Chứng tỏ f(x) – g(x) không có nghiệm
ai giúp mk với :)) mk cảm ơn !
a: \(F\left(x\right)=x^3+2x^2+3x+4\)
\(G\left(x\right)=x^3-x^2+3x+1\)
b: \(F\left(x\right)+G\left(x\right)=2x^3+x^2+6x+5\)
\(F\left(x\right)-G\left(x\right)=3x^2+3\)
a)
F(x)=x3+2x2+3x+4F(x)=x3+2x2+3x+4
G(x)=x3−x2+3x+1
b)
F(x)+G(x)=2x3+x2+6x+5F(x)+G(x)=2x3+x2+6x+5
F(x)−G(x)=3x2+3
1.Tìm nghiệm đa thức
1)6x3 - 2x2
2)|3x + 7| + |2x2 - 2|
2.Chứng minh đa thức ko có nghiệm
1)x2 + 2x + 4
2)3x2 - x + 5
3.Tìm các hệ số a, b, c, d của đa thức f(x) = ax3 + bx2+ cx + d
Biết f(0)=5; f(1)=4; f(2)=31; f(3)=88
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
Bài 3:
$f(0)=a.0^3+b.0^2+c.0+d=d=5$
$f(1)=a+b+c+d=4$
$a+b+c=4-d=-1(*)$
$f(2)=8a+4b+2c+d=31$
$8a+4b+2c=31-d=26$
$4a+2b+c=13(**)$
$f(3)=27a+9b+3c+d=88$
$27a+9b+3c=88-d=83(***)$
Từ $(*); (**); (***)$ suy ra $a=\frac{1}{3}; b=13; c=\frac{-43}{3}$
Vậy.......