M(x) = \(3x^4\) - \(2x^3\) + \(x^2\) -4x+5
N(x)=\(2x^3\) + \(x^2\) - 4x -5
tính M (x) + N(x)
1, tìm n để
a, ( x^3 - 4x^2 +x-n)chia hết (x-4)
b, (4x^3-2x^2 +2x+n) chia hết (2x+1)
c, (x^4 -3x^2+3x-n) chia hết (x-3)
d, (2x^4-4x^3+6x^2-12x+n) chia hết ( x-2)
a: Ta có \(x^3-4x^2+x-n⋮x-4\)
\(\Leftrightarrow x^2\left(x-4\right)+x-4+n+4⋮x-4\)
=>n+4=0
hay n=-4
b: ta có: \(4x^3-2x^2+2x+n⋮2x+1\)
\(\Leftrightarrow4x^3+2x^2-4x^2-2x+4x+2+n-2⋮2x+1\)
=>n-2=0
hay n=2
c: \(\Leftrightarrow x^4-3x^3+3x^3-9x^2+6x^2-18x+21x-63-n+63⋮x-3\)
=>63-n=0
hay n=63
cho hai đa thức m(x)=3x^4-2x^3+5x^2-4x+1
n(x)=-3x^4+2x^3-3x^2+7x+5
a)tính p(x)=m(X)+n(x)
b)tính giá trị của p(x)tại x=-2
a, M(\(x\) )+N(\(x\)) = 3\(x^4\) - 2\(x\)3 + 5\(x^2\) - \(4x\)+ 1 + ( -3\(x^4\) + 2\(x^3\)- 3\(x^2\)+ 7\(x\) + 5)
M(\(x\)) + N(\(x\)) = ( 3\(x^4\)- 3\(x^4\))+( -2\(x^3\) + 2\(x^3\))+(5\(x^2\) - 3\(x^2\))+( 7\(x-4x\)) +(1+5)
M(\(x\)) + N(\(x\)) = 0 + 0 + 2\(x^2\) + 3\(x\) + 6
M(\(x\)) + N(\(x\)) = 2\(x^2\) + 3\(x\) + 6
b, P(\(x\)) = M(\(x\)) + N(\(x\)) = 2\(x^2\) + 3\(x\) + 6
P(-2) = 2.(-2)2 + 3.(-2) + 6 = 8 - 6 + 6 = 8
Bài 1: Nhân
a) 4x(3x-1)-2(3x+1)-(x+3)
b) (-2x^2-1xy+2y^2)(-1x^2y)
c) 4x(3x^2-x) -(2x+3)^2(6x^2-3x+1)
d) (x-2)(x+2)(x+4)
Bài 2: Tìm x
a) 4x(x-1)-3(x^2-5)-x^2=(x-3)(x+4)
b) 2(3x-1)(2x+5-6)(2x-1)(x+2)=6
c) 3(2x-1)(3x-1)-(2x-3)(9x-1)-3=-3
Bài 1:
a) \(4x\left(3x-1\right)-2\left(3x+1\right)-\left(x+3\right)\)
\(=12x^2-4x-6x-2-x-3\)
\(=12x^2-11x-5\)
b) \(=\left(-2x^2-1xy+2y^2\right)\left(-1x^2y\right)\)
\(=\left[\left(-1x^2y\right)\left(-2x^2\right)\right]-\left[\left(-1x^2y\right).1xy\right]+\left[\left(-1x^2y\right).2y^2\right]\)
\(=\left(2x^4y\right)-\left(-1x^3y^2\right)+\left(-2x^2y^3\right)\)
\(=2x^4y+1x^3y^2-2x^2y^3\)
c) \(4x\left(3x^2-x\right)-\left(2x+3\right)^2\left(6x^2-3x+1\right)\)
\(=\left(4x.3x^2\right)-\left(4x.x\right)-\left[\left(2x\right)^2+2.2x.3+3^2\right]\left(6x^2-3x+1\right)\)
\(=12x^3-4x^2-\left(4x^2+12x+9\right)\left(6x^2-3x+1\right)\)
\(=12x^3-4x^2-\left[4x^2\left(6x^2-3x+1\right)+12x\left(6x^2-3x+1\right)+9\left(6x^2-3x+1\right)\right]\)
\(=12x^3-4x^2-\left[\left(24x^4-12x^3+4x^2\right)+\left(72x^3-36x^2+12x\right)+\left(36x^2-27x+9\right)\right]\)
\(=12x^3-4x^2-24x^4+12x^3-4x^2-72x^3+36x^2-12x-36x^2+27x-9\)
\(=-48x^3-8x^2-24x^4+15x-9\)
Bài 1:
a) \(12x^2-11x-5\)
b,c,d tương tự.
Phân tích các đa thức sau thành nhân tử :
a, x^2 + 4x + 3
b,16x - 5x^2 - 3
c, 2x^2 + 7x + 5
d, 2x^2 + 3x - 5
e,x^3 - 3x^2 + 1 - 3x
f, x^2 - 4x - 5
g, ( a^2 + 1 )^2 - 4a^2
h, x^3 - 3x^2 - 4x + 12
i, x^4 + x^3 + x + 1
k, x^4 - x^3 - x^2 + 1
l, ( 2x + 1 )^2 - ( x - 1 )^2
m,x^4 + 4x^2 - 5
Giúp mình với ạ mình đang cần gấp
a) Ta có: \(x^2+4x+3\)
\(=x^2+x+3x+3\)
\(=x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
b) Ta có: \(16x-5x^2-3\)
\(=-5x^2+16x-3\)
\(=-5x^2+15x+x-3\)
\(=-5x\left(x-3\right)+\left(x-3\right)\)
\(=\left(x-3\right)\left(-5x+1\right)\)
c) Ta có: \(2x^2+7x+5\)
\(=2x^2+2x+5x+5\)
\(=2x\left(x+1\right)+5\left(x+1\right)\)
\(=\left(x+1\right)\left(2x+5\right)\)
d) Ta có: \(2x^2+3x-5\)
\(=2x^2+5x-2x-5\)
\(=x\left(2x+5\right)-\left(2x+5\right)\)
\(=\left(2x+5\right)\left(x-1\right)\)
e) Ta có: \(x^3-3x^2+1-3x\)
\(=\left(x+1\right)\cdot\left(x^2-x+1\right)-3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1-3x\right)\)
\(=\left(x+1\right)\left(x^2-4x+1\right)\)
f) Ta có: \(x^2-4x-5\)
\(=x^2-4x+4-9\)
\(=\left(x-2\right)^2-3^2\)
\(=\left(x-2-3\right)\left(x-2+3\right)\)
\(=\left(x-5\right)\left(x+1\right)\)
g) Ta có: \(\left(a^2+1\right)^2-4a^2\)
\(=\left(a^2+1\right)^2-\left(2a\right)^2\)
\(=\left(a^2+1-2a\right)\left(a^2+1+2a\right)\)
\(=\left(a-1\right)^2\cdot\left(a+1\right)^2\)
h) Ta có: \(x^3-3x^2-4x+12\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-4\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
i) Ta có: \(x^4+x^3+x+1\)
\(=x^3\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+1\right)\)
\(=\left(x+1\right)^2\cdot\left(x^2-x+1\right)\)
k) Ta có: \(x^4-x^3-x^2+1\)
\(=x^3\left(x-1\right)-\left(x^2-1\right)\)
\(=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x^3-x-1\right)\)
l) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(=\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)
\(=3x\left(x+2\right)\)
m) Ta có: \(x^4+4x^2-5\)
\(=x^4-x^2+5x^2-5\)
\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
Cho hai đa thức
M(x)= x^4+3x-1/9-x+3x^4+2x^2
N(x)==8x-2x^3+2/3+4x-4x^4-1/3
a, tính nghiệm của đa thức P(x)= M(x)=N(x)
b,thu gọn và sắp xếp hai đa thức theo lũy thừa giảm dần của biến
a)\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(P\left(x\right)=x^4+3x-\dfrac{1}{9}-x+3x^4+2x^2+8x-2x^3+2x^3+\dfrac{2}{3}+4x-4x^4-\dfrac{1}{3}\)
\(P\left(x\right)=2x^2+\dfrac{2}{9}+14x\)
Tính M(x) sao cho M(x) +2B(x)=A(x)
A(x)=5x^5 +3x - 4x^4- 2x^3+6+4x^2
B(x)=2x^4-x+3x^2-2x^3+1/4 -x^5
Phân tích các đa thức sau thành nhân tử :
a, x^2 + 4x + 3
b,16x - 5x^2 - 3
c, 2x^2 + 7x + 5
d, 2x^2 + 3x - 5
e,x^3 - 3x^2 + 1 - 3x
f, x^2 - 4x - 5
g, ( a^2 + 1 )^2 - 4a^2
h, x^3 - 3x^2 - 4x + 12
i, x^4 + x^3 + x + 1
k, x^4 - x^3 - x^2 + 1
l, ( 2x + 1 )^2 - ( x - 1 )^2
m,x^4 + 4x^2 - 5
Tìm x, biết :
a, ( x +2 ) ( x^2 - 2x + 4 ) - x( x + 3 ) ( x - 3) = 26
b, ( x - 3 ) ( x^2 + 3x + 9 ) - x( x - 4 ) ( x + 4 ) = 21
c, ( 2x -1 ) ( 4x^2 + 2x + 1 ) - 4x(2x^2 - 3 ) = 23
a/\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x+3\right)\left(x-3\right)=26\)
↔ \(x^3+2^3\)\(-x\left(x^2-3^2\right)\)= 26
↔\(x^3+8-x^3+9x=26\)
↔\(9x=18\leftrightarrow x=2\)
Vậy x=2
b/\(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x-4\right)\left(x+4\right)=21\)
\(\Leftrightarrow x^3-3^3-x\left(x^2-4^2\right)=21\)
\(\Leftrightarrow x^3-9-x^3+16x=21\)
\(\Leftrightarrow16x=30\)
\(\Leftrightarrow x=\frac{15}{8}\)
Vậy \(x=\frac{15}{8}\)
c/\(\left(2x-1\right)\left(4x^2+2x+1\right)-4x\left(2x^2-3\right)=23\)
↔\(\left(2x\right)^3-1^3-4x\left(2x^2-3\right)=23\)
↔\(8x^3-1-8x^3+12x=23\)
↔\(12x=24\leftrightarrow x=2\)
Vậy x=2
a, (x + 2)(x2 - 2x + 4 ) - x(x + 3)(x - 3) = 26
<=> x3 + 8 - x(x2 - 9) = 26
<=> x3 + 8 - x3 + 9x = 26
<=> 9x - 18 = 0
<=> 9x = 18
<=> x = 2
b, (x - 3)(x2 + 3x + 9) - x(x - 4)(x + 4) = 21
<=> x3 - 27 - x(x2 - 16) = 21
<=> x3 - 27 - x3 + 16x = 21
<=> 16x - 48 = 0
<=> 16x = 48
<=> x = 3
c, (2x - 1)(4x2 + 2x + 1) - 4x(2x2 - 3) = 23
<=> 8x3 - 1 - 8x3 + 12x = 23
<=> 12x - 24 = 0
<=> 12x = 24
<=> x = 2
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x+3\right)\left(x-3\right)=26\)
\(< =>x^3-2x^2+4x+2x^2-4x+8-x\left(x^2-9\right)-26=0\)
\(< =>x^3+8-x^3+9x-26=0\)
\(< =>9x-18=0< =>x=2\)
Làm hộ mình bài này với
Tìm x
a, 3x.(2x+3)-(2x+5).(3x-2)=8
b, 4x.(x-1)-3(x(mũ 2) -5)-x(mũ 2 )=(x-3). (x-4)
c, 2 .(5x-8) -3.(4x-5)=4.(3x-4)+11
d, 2x(mũ 2)+ 3.(x-1) (x+1)
Giúp mk vs ạ