Những câu hỏi liên quan
Xem chi tiết
NM
12 tháng 4 2023 lúc 21:42

a , | 4x + 2020 | = 0

b , | 2x + 1/4 |  + | -5 | = | -14 |

c , | 2020 - 5x | - | 3 | = - | -8 |

d , | x mũ 2 + 4x | = 0 

e , | x-1 | + 3x = 1 

g , | 2-3x | + 3x = 2

h , | 5x-4 | + 5x = 4 

i , | x - 1/4 | - | 2x + 5 | = 0 

k , | 5x - 7 | - | 8-5x | = 0 

n , | x mũ 3 -

    

Bình luận (0)
PN
Xem chi tiết
NT
28 tháng 4 2023 lúc 18:40

loading...  

Bình luận (0)
TH
Xem chi tiết
NM
24 tháng 9 2023 lúc 20:50

2030 × 4 +2023 × 2 + 3 × 2023

 =8120 + 4046 + 6069

=18235

Bình luận (0)
LP
24 tháng 9 2023 lúc 20:54

= 4x2023+2023x2+2023 x1 + 3x2023
=2023x (4+2+3+1)
= 2023 x 10
= 20230
cảm ơn bạn đã đọc!

Bình luận (0)
BT
24 tháng 9 2023 lúc 21:42

4×2030 + 2 × 2030+3×2030 =4×2030+2×2030+3×2030 ×1= 2030×(4+2+3+1)=2030×10=20300

Bình luận (0)
NP
Xem chi tiết
H24
22 tháng 12 2023 lúc 20:41

Ta có:

\(x^2+5y^2-4x-4xy+6y+5=0\\\Rightarrow[(x^2-4xy+4y^2)-(4x-8y)+4]+(y^2-2y+1)=0\\\Rightarrow[(x-2y)^2-4(x-2y)+4]+(y-1)^2=0\\\Rightarrow(x-2y-2)^2+(y-1)^2=0\)

Ta thấy: \(\left\{{}\begin{matrix}\left(x-2y-2\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x-2y-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

Mà: \(\left(x-2y-2\right)^2+\left(y-1\right)^2=0\)

nên: \(\left\{{}\begin{matrix}x-2y-2=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2y+2\\y=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot1+2=4\\y=1\end{matrix}\right.\)

Thay \(x=4;y=1\) vào \(P\), ta được:

\(P=\left(4-3\right)^{2023}+\left(1-2\right)^{2023}+\left(4+1-5\right)^{2023}\)

\(=1^{2023}+\left(-1\right)^{2023}+0^{2023}\)

\(=1-1=0\)

Vậy \(P=0\) khi \(x=4;y=1\).

Bình luận (0)
AK
Xem chi tiết
H24
23 tháng 8 2023 lúc 9:53

Để tính (x+y)2023, ta sẽ sử dụng công thức nhân đa thức. Trước tiên, ta mở đuôi công thức:(x+y)2023 = (x+y)(x+y)(x+y)...(x+y)Từ phép nhân đầu tiên, ta có:(x+y)(x+y) = x^2 + 2xy + y^2Tiếp tục nhân với (x+y), ta có:(x^2 + 2xy + y^2)(x+y) = x^3 + 3x^2y + 3xy^2 + y^3Lặp lại quá trình này 2020 lần nữa, ta có:(x^3 + 3x^2y + 3xy^2 + y^3)(x+y) = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4Tiếp tục nhân với (x+y), ta có:(x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4)(x+y) = x^5 + 5x^4y + 10x^3

Bình luận (2)
DB
23 tháng 8 2023 lúc 10:00

Bình luận (2)
H24
23 tháng 8 2023 lúc 10:02

Để tính (x+y)2023, ta sẽ sử dụng công thức nhân đa thức. 

 

Trước tiên, ta mở đuôi công thức:

 

(x+y)2023 = (x+y)(x+y)(x+y)...(x+y)

 

Từ phép nhân đầu tiên, ta có:

 

(x+y)(x+y) = x^2 + 2xy + y^2

 

Tiếp tục nhân với (x+y), ta có:

 

(x^2 + 2xy + y^2)(x+y) = x^3 + 3x^2y + 3xy^2 + y^3

 

Lặp lại quá trình này 2020 lần nữa, ta có:

 

(x^3 + 3x^2y + 3xy^2 + y^3)(x+y) = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4

 

Tiếp tục nhân với (x+y), ta có:

 

(x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4)(x+y) = x^5 + 5x^4y + 10x^3

Bình luận (0)
AK
Xem chi tiết
TP
Xem chi tiết
PM
Xem chi tiết
H24
14 tháng 1 2022 lúc 16:38

C

Bình luận (0)
DD
Xem chi tiết
NT
11 tháng 4 2021 lúc 12:01

a, Ta có :  \(f\left(x\right)-g\left(x\right)=h\left(x\right)\)hay 

\(4x^2+3x+1-3x^2+2x-1=h\left(x\right)\)

\(\Rightarrow h\left(x\right)=x^2+5x\)

b, Đặt \(h\left(x\right)=x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy nghiệm của đa thức h(x) là x = -5 ; x = 0 

Đặt \(k\left(x\right)=7x^2-35x+42=0\)

\(\Leftrightarrow7\left(x^2+5x+6\right)=0\)

\(\Leftrightarrow7\left(x^2+2x+3x+6\right)=0\Leftrightarrow7\left(x+2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)

Vậy nghiệm của đa thức k(x) là x = -3 ; x = -2

Bình luận (0)
 Khách vãng lai đã xóa
DD
10 tháng 4 2021 lúc 21:11

xin lỗi mọi người 1 tý nha cái phần c) ý ạ đề thì vậy như thế nhưng có cái ở phần biểu thức ở dưới ý là 

\(\left(\frac{3^2}{6}-81\right)^3\) chuyển thành \(\left(\frac{3^3}{6}81\right)^3\)

bị sai mỗi thế thôi ạ mọi người giúp em với ạ

Bình luận (0)
 Khách vãng lai đã xóa
DD
10 tháng 4 2021 lúc 21:12

là \(\left(\frac{3^3}{6}-81\right)^3\)

Bình luận (0)
 Khách vãng lai đã xóa