Tính:
a) C= 2/1.7+ 2/7.13+2/13.19+...+2/1013.1019
b) D= 7/1.9+7/9.17+7/17.25+...+7/2011.2019
\(\left(\frac{8}{1.9}+\frac{8}{9.17}+\frac{8}{17.25}+.....+\frac{8}{49.57}\right)+2.\left(x-1\right)=\frac{2x+7}{3}+\frac{5x-8}{4}\)
Ta có: \(\left(\frac{8}{1.9}+\frac{8}{9.17}+\frac{8}{17.25}+...+\frac{8}{49.57}\right)+2\left(x-1\right)=\frac{2x+7}{3}+\frac{5x-8}{4}\)
\(\Leftrightarrow1-\frac{1}{9}+\frac{1}{9}-\frac{1}{17}+\frac{1}{17}-\frac{1}{25}+....+\frac{1}{49}-\frac{1}{57}+2x-2=\frac{8x+28+15x-24}{12}\)
\(\Leftrightarrow1-\frac{1}{57}+2x-2=\frac{23x+4}{12}\)
\(\Leftrightarrow2x-\frac{58}{57}=\frac{23x+4}{12}\)
\(\Leftrightarrow24x-\frac{232}{19}=23x+4\)
\(\Leftrightarrow x=\frac{308}{19}\)
Gỉai pt sau giúp mk với:
a) \(\left(\frac{8}{1.9}+\frac{8}{9.17}+\frac{8}{17.25}+.....+\frac{8}{49.57}\right)+2.\left(x-1\right)=\frac{2x+7}{3}+\frac{5x-8}{4}\)
tinh tong:A=2/1.7+2/7/13+2/13.19+...+2/601.607
1.Tính:a)\(\frac{2}{1.7}+\frac{2}{7.13}+\frac{2}{13.19}+....+\frac{2}{601.607}\)
b)\(S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
Giải pt sau:
a) \(\left(\dfrac{8}{1.9}+\dfrac{8}{9.17}+\dfrac{8}{17.25}+....+\dfrac{8}{49.57}\right)+2.\left(x-1\right)=\dfrac{2x+7}{3}+\dfrac{5x-8}{4}\)
b) \(\left(x+2\right).\left(x-2\right).\left(x^2-10\right)=72\)
c) (x+3)4+ (x+5)4 = 2
a: \(\Leftrightarrow\left(1-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{17}+...+\dfrac{1}{49}-\dfrac{1}{57}\right)+2x-2=\dfrac{2}{3}x+\dfrac{7}{3}+\dfrac{5}{4}x-2\)
\(\Leftrightarrow\dfrac{56}{57}+2x-2=\dfrac{23}{12}x+\dfrac{1}{3}\)
=>1/12x=77/57
=>x=308/19
b: =>(x^2-4)(x^2-10)=72
=>x^4-14x^2+40-72=0
=>x^4-14x^2-32=0
=>(x^2-16)(x^2+2)=0
=>x^2-16=0
=>x^2=16
=>x=4 hoặc x=-4
a, A=1.7+7.13+13.19+19.25+.....+9.97
b, B= 2^2+3^2+4^2+...........+80^2
c, C=1.99+2.98+3.97+.......+99.1
giúp mình đc ko
mình đang cần gấp
tính G= \(\frac{6^2}{1.7}+\frac{6^2}{7.13}+\frac{6^2}{13.19}+...+\frac{6^2}{n\left(n+6\right)}\)
G=6(6/1.7+6/7.13+6/13.19+..+6/n(n+6) )
=6(1-1/7+1/7-1/13+1/13-1/19+....+1/n-1/n+6)
=6(1-n/n+6)
=6.6/n+6
=36/n+6
vậy G=36/n+6
Tính bằng cách hợp lí :
\(A=1.7+7.13+13.19+....+91.97\)
5/1.7+5/7.13+5/13.19+...+5/2017.2023
\(\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+...+\frac{5}{2017.2023}\)
\(=5.\frac{1}{6}.\left(\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+...+\frac{6}{2017.2023}\right)\)
\(=\frac{5}{6}.\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+...+\frac{1}{2017}-\frac{1}{2023}\right)\)
\(=\frac{5}{6}.\left(1-\frac{1}{2023}\right)\)
\(=\frac{5}{6}.\frac{2022}{2023}\)
\(=\frac{1685}{2023}\)
\(\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+...+\frac{5}{2017.2023}\)
\(=\frac{5.6}{1.7.6}+\frac{5.6}{7.13.6}+\frac{5.6}{13.19.6}+.....+\frac{5.6}{2017.2023.6}\)
\(=\frac{5}{6}.\left(\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+...+\frac{6}{2017.2023}\right)\)
\(=\frac{5}{6}.\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+...+\frac{1}{2017}-\frac{1}{2023}\right)\)
\(=\frac{5}{6}.\left(1-\frac{1}{2023}\right)\)
\(=\frac{5}{6}.\frac{2022}{2023}\)
\(=\frac{1685}{2023}\)