Cho tam giác ABC có AH ⊥ BC (H ∈ BC) thì
Cho tam giác ABC có AH vuông góc với BC (H thuộc BC) biết BC = 5cm, AH = 4 cm. Tính diện tích tam giác ABC
S ABC=1/2*AH*BC=1/2*4*5=10cm2
Cho tam giác ABC có AH _|_ BC (H thuộc BC) Có AH=5cm , BC=4cm Tính diện tích tam giác ABC Mọi người giúp em bài toán này với ạ!
vì Δ ABC có AH \(\perp\)BC ( H thuộc BC)nên AH là đường cao của Δ ABC
=>\(S_{ABC}=\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.5.4=10cm^2\)
1.CMR nếu ở miền trong tam giác ABC có điểm D sao cho AD=AB thì AB < AC
2 cho tam giác ABC vuông tại A (AB<AC) .Vẽ AH vuông góc với BC (H thuộc BC). CMR AB+AC<AH+BC
1.
Chọn điểm D như hình vẽ. Gọi E là giao điểm của AB và DC.
Ta có: \(\widehat{ADE}\)là góc ngoài của tam giác ADC => \(\widehat{ADE}>\widehat{ACD}\)(1)
Tương tự \(\widehat{BDE}>\widehat{BCD}\)(2)
(1), (2) => \(\widehat{ADB}>\widehat{ACB}\)
Mà \(\widehat{ADB}=\widehat{ABD}\)
=> \(\widehat{ABC}>\widehat{ABD}=\widehat{ADB}>\widehat{ACB}\)
=> AC>AB
Xét tam giác ABC vuông tại A
Theo BĐT tam giác: \(AB< AC+BC\)
Và tam giác AHC vuông tại H có: \(AC< AH+CH\) (1)
\(\Rightarrow AB+AC< \left(AH+BC\right)+\left(AC+CH\right)\)
Hay \(AB+AC< \left(AH+CH+BH\right)+\left(AC+CH\right)\)
Hay \(AB+AC< AH+2CH+BH+AC\)
Bớt AC ở cả hai vế: \(AB< AH+2CH+BH\) (2)
Từ (1) và (2) suy ra \(AB+AC< 2AH+2CH+BH+CH\)
Hay \(AB+AC< 2AH+2CH+BC\)
Tới đây bí rồi.
Cho tam giác ABC cân A
a) Biết góc B =60 độ
b) Kẻ AH vuông góc BC (H thuộc BC).CM: H là trung điểm BC
c) Biết AH=4cm, BC= 6cm.Tính AB
d) Nếu góc HAC = 30 độ thì tam giác ABC là tam giác gì ? Vì sao
Cho tam giác ABC. Có AH là đường cao (H thuộc BC). Biết AC = 10cm, AH = 8cm, BC = 12cm. Khi đó chu vi tam giác ABC là
Theo hình vẽ , ta có : AH2 + HC2 = AC2 => HC2 = AC2 - AH2 = 102 - 82 = 100 - 64 = 36 => HC = 6 cm
=> HB = BC - HC = 12 - 6 = 6 (cm) => AH2 + HB2 = AB2 = 82 + 62 = 64 + 36 = 100 => AB = 10 cm
=> PABC = AB + BC + AC = 10 + 12 + 10 = 32 (cm)
Cho tam giác ABC. Có AH là đường cao (H thuộc BC). Biết AC = 10cm, AH = 8cm, BC = 12cm. Khi đó chu vi tam giác ABC là
Bài 2: Cho tam giác ABC có AB = 15cm; AC= 20cm; BC = 25 cm.a) Chứng minh: Tam giác ABC vuông.b) Kẻ AH 1 BC (H € BC). Tính độ dài BH khi AH = 12cm.
Mình làm tóm tắt thôi nhé! Cậu tự giải sẽ nhớ lâu hơn!
Câu a) định lý Pytago đảo
b)Áp dụng định lí Pytago vào tam giác ABH
Cho tam giác ABC ( cân tại A ) có AB=AC=5cm; BC=6cm. Kẻ AH vuông góc BC(H thuộc BC)
a) Chứng minh tam giác ABH = tam giác ACH
b) Chứng minh H là trung điểm của BC
c) Tính AH
a, Xét tam giác ABH và tam giác ACH ta có
AB = AC (gt)
AH _ chung
^AHB = ^AHC = 900
Vậy tam giác ABH = tam giác ACH ( ch - cgv )
b, Xét tam giác ABC cân tại A
AH là đường cao đồng thời là đường trung tuyến
=> H là trung điểm BC
c, Do H là trung điểm BC => HB = 6/2 = 3 cm
Theo định lí Pytago tam giác AHB vuông tại H
\(AH=\sqrt{AB^2-BH^2}=\sqrt{25-9}=4cm\)
Cho tam giác ABC có BC = 52 cm, AB = 20 cm, AC = 48 cm.
a. Tam giác ABC có vuông không?
b. Kẻ AH vuông góc với BC tại H. Tính độ dài AH.
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{240}{13}\left(cm\right)\)
a. Ta có: BC2=AB2+AC2, suy ra tam giác ABC vuông tại A.
b. Ta có: AB.AC=AH.BC, suy ra AH=AB.AC/BC=20.48/52=240/13.