(X x 0,25 + 2021) x 2022 = (50 + 2021) x 2022
\(\dfrac{-6}{17}x\dfrac{-2021}{2022}+\dfrac{2021}{2022}x\dfrac{-23}{17}+\dfrac{2021}{2022}\)
\(=\dfrac{2021}{2022}\left(\dfrac{6}{17}-\dfrac{23}{17}\right)+\dfrac{2021}{2022}=\dfrac{-2021}{2022}+\dfrac{2021}{2022}=0\)
tìm x, y thuộc Z biết (x-2021)^2+(x-2022)^2022=2022^y-2021
tìm x, y thuộc Z biết (x-2021)^2+(x-2022)^2022=2022^y-2021
cho x,y,z khác 0 thoả mãn x+y+z=2022 và 1/x+1/y+1/z=1/2022 CMR: 1/x^2021+1/y^2021+1/z^2021=1/x^2021+y^2021+z^2021
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2022}\)
\(\Rightarrow\dfrac{yz+zx+xy}{xyz}=\dfrac{1}{x+y+z}\)
\(\Rightarrow\left(yz+zx+xy\right)\left(x+y+z\right)=xyz\)
\(\Rightarrow xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+3xyz-xyz=0\)
\(\Rightarrow xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz=0\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Rightarrow x=-y\) hoặc \(y=-z\) hoặc \(z=-x\).
-Đến đây thôi bạn, câu hỏi sai rồi ạ.
Cho x,y,z khác 0 thỏa mãn x+yz=2022 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2022\)
CMR: \(\dfrac{1}{x^{2021}}+\dfrac{1}{y^{2021}}+\dfrac{1}{z^{2021}}=\dfrac{1}{x^{2021}+y^{2021}+z^{2021}}\)
P(x)=x^101-2022*x^100+2022*x^99-2022*x^98+...+2022*x-1
Khi x=2021
Ta có \(x+1=2022\)
\(P\left(x\right)=x^{101}-\left(x+1\right)x^{100}+...+\left(x+1\right)x-1\)
\(=x^{101}-x^{101}-x^{100}+...+x^2+x-1=x-1\)
-> P(x) = 2020
x - 2021/2020 + x-2021/2021 - x- 2021/2022 - x- 2021/2023= 0
x= 2002/3000
ko bt đúng ko mong bn nhắc nhở
Cho \(\dfrac{x}{2020}+\dfrac{y}{2021}+\dfrac{z}{2022}=1\) và \(\dfrac{2020}{x}+\dfrac{2021}{y}+\dfrac{2022}{z}=0\) \(\left(x,y,z\ne0\right)\)
Chứng minh rằng \(\dfrac{x^2}{2020^2}+\dfrac{y^2}{2021^2}+\dfrac{z^2}{2022^2}=1\)
Giải Phương trình sau: (x-2021)^2022+|x-2022|^2022=1
TH1: (x-2021)^2022=0 và |x-2022|^2022=1
=>x-2021=0 và (x-2022=1 hoặc x-2022=-1)
=>x=2021
TH2: (x-2021)^2022=1 và |x-2022|^2022=0
=>x-2022=0 và (x-2021=1 hoặc x-2021=-1)
=>x=2022