Chọn ngẫu nhiên một số trong bốn số 11;12;13 và 14. Tìm xác suất để:
a) Chọn được số chia hết cho 5
b) Chọn được số có hai chữ số
c) Chọn được số nguyên tố
d) Chọn được số chia hết cho 6
Bài 2.
a.)Chọn ngẫu nhiên một số trong bốn số sau 5;7;11;13. Xác suất để chọn được số lẻ
b.) Lấy ngẫu nhiên một số từ các số 5;10;15;20. Xác suất để lấy được số nguyên tố
a: n(omega)=4
n(A)=4
=>P=4/4=1
b: n(omega)=4
n(A)=1; A={5}
=>P(A)=1/4
Cho A là tập tất cả các số tự nhiên có 4 chữ số phân biệt được lập từ tập {1;2;3;4;5;6;7;8;9}. Chọn ngẫu nhiên một số từ tập A. Xác suất để chọn được một số chia hết cho 11 và tổng bốn chữ số của nó chia hết cho 11 bằng
A . 1 63
B . 8 21
C . 1 84
D . 1 42
Chọn A
Số phần tử của A là A 9 4 = 3024 số.
Số phần tử của không gian mẫu là n ( Ω ) = 3024
Gọi A là biến cố: “Chọn được một số chia hết cho 11 và tổng bốn chữ số của nó chia hết cho 11”.
Xét số tự nhiên có 4 chữ số có dạng
Theo bài ra ta có: và
Suy ra
Trong các chữ số 1;2;3;4;5;6;7;8;9 có các bộ số mà tổng chia hết cho 11 là
Chọn 2 cặp trong 4 cặp số trên để tạo số
Chọn {a;c} có 4 cách, chọn {b;d} có 3 cách, sau đó sắp thứ tự các số a, b, c, d. Ta được 4.3.2.2 = 48
Suy ra n(A) = 48
Chọn ngẫu nhiên một số tự nhiên trong các số tự nhiên có bốn chữ số. Tính xác suất để số được chọn có ít nhất hai chữ số 8 đứng liền nhau.
A. 0,029
B. 0,019
C. 0,021
D. 0,017
Chọn A
Xét phép thử: “Chọn ngẫu nhiên một số tự nhiên trong các số tự nhiên có bốn chữ số”
Ta có
Biến cố A: “Số được chọn có ít nhất hai chữ số 8 đứng liền nhau”.
Gọi số có 4 chữ số a b c d ¯ là trong đó có ít nhất hai chữ số 8 đứng liền nhau, a ≠ 0
TH1: Có đúng hai chữ số 8 đứng liền nhau.
+) Số có dạng 88 c d ¯ : có 9.9 = 81 số.
+) Số có dạng a 88 d ¯ hoặc a b 88 ¯ : mỗi dạng có 8.9 = 72 số.
TH2: Có đúng ba chữ số 8 trong đó có ít nhất hai chữ số 8 đứng liền nhau.
+) Số có dạng a 888 ¯ : có 8 số.
+) Số có dạng 8 b 88 ¯ hoặc 88 c 8 ¯ hoặc 888 d ¯ : Mỗi dạng có 9 số.
TH3: Cả 4 chữ số đều là chữ số 8: Có 1 số là số 8888
Do đó n(A) = 81 + 2.72 + 8 + 3.9 + 1 = 261
Xác suất cần tìm
Gọi S là tập hợp các số tự nhiên gồm bốn chữ số đôi một khác nhau được lấy từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9. Chọn ngẫu nhiên một số từ S. Tính xác suất P để được một số chia hết cho 11 và tổng bốn chữ số của nó cũng chia hết cho 11.
A . P = 1 126
B . P = 2 63
C . P = 1 63
D . P = 3 126
Chọn C
Ta có
Gọi số tự nhiên cần tìm có bốn chữ số là a b c d ¯
Vì a b c d ¯ chia hết cho 11 nên (a + c) - (b + d) ⋮ 11
=> (a + c) - (b + d) = 0 hoặc (a + c) - (b + d) = 11 hoặc (a + c) - (b + d) = -11 do
Theo đề bài ta cũng có a + b + c + d chia hết cho 11
Mà
hoặc
Vì nên (a + c) - (b + d) và a + b + c + d cùng tính chẵn, lẻ
(do các trường hợp còn lại không thỏa mãn) => (a,c) và (b,d) là một trong các cặp số:
- Chọn 2 cặp trong số 4 cặp trên ta có C 4 2 cách.
- Ứng với mỗi cách trên có 4 cách chọn a; 1 cách chọn c; 2 cách chọn b; 1 cách chọn d.
Vậy xác suất cần tìm là
Bài 3: Chọn ngẫu nhiên một số trong bốn số 11;13;15 và 17. Tìm xác suất chọn được số chia hết cho 2và chọn được số có hai chữ số.
Trong bốn số 11;13;15 và 17 thì không có số nào chia hết cho 2 nên xác suất chọn được số chia hết cho 2 là: \(0\)
Trong bốn số 11;13;15 và 17 thì cả bốn số này đều là số có hai chữ số nên xác suất chọn được số có hai chữ số là: \(\dfrac{4}{4}=1\)
Chọn ngẫu nhiên một số trong bốn số 11;12;13 và 14. Tìm xác suất để:
a) Chọn được số chia hết cho 5
b) Chọn được số có hai chữ số
c) Chọn được số nguyên tố
d) Chọn được số chia hết cho 6
a) Biến cố “ Chọn được số chia hết cho 5” là biến cố không thể ( do trong các số đã cho không có số nào chia hết cho 5) nên xác suất chọn được số chia hết cho 5 là 0.
b) Biến cố: “ Chọn được số có hai chữ số” là biến cố chắc chắn ( do tất cả các số đã cho đều là số có 2 chữ số) nên xác suất chọn được số có hai chữ số là 1.
c) Xét 2 biến cố: “ Chọn được số nguyên tố” và “ Chọn được hợp số”
2 biến cố này là 2 biến cố đồng khả năng (đều có 2 khả năng) và luôn xảy ra 1 trong 2 biến cố đó
Xác suất của mỗi biến cố đó là \(\dfrac{1}{2}\)
Vậy xác suất để chọn được số nguyên tố là \(\dfrac{1}{2}\)
d) Trong 4 số trên chỉ có số 12 là số chia hết cho 6.
Xét 4 biến cố: “Chọn được số 11”; “Chọn được số 12”; “Chọn được số 13”; “Chọn được số 14”
4 biến cố này là 4 biến cố đồng khả năng (đều có 2 khả năng) và luôn xảy ra 1 trong 4 biến cố đó
Xác suất của mỗi biến cố đó là \(\dfrac{1}{4}\)
Vậy xác suất để chọn được chọn được số 12 hay chọn được số chia hết cho 12 là \(\dfrac{1}{4}\)
Gọi S là tập hợp tất các cả số tự nhiên gồm bốn chữ số. Chọn ngẫu nhiên một số từ S, xác suất để số chọn được có bốn chữ số khác nhau bằng
A. 14 25
B. 63 125
C. 2 25
D. 18 25
Chọn ngẫu nhiên một số trong tập hợp {2;3;5;6;7;8;10}. Trong các biến cố sau, biến cố nào là biến cố chắc chắn, biến cố không thể hay biến cố ngẫu nhiên?
A: “ Số được chọn là số nguyên tố”
B: “ Số được chọn là số bé hơn 11”
C: “ Số được chọn là số chính phương”
D: “ Số được chọn là số chẵn”
E: “ Số được chọn là số lớn hơn 1”
Biến cố chắc chắn: B , E
Biến cố không thể: C
Biến cố ngẫu nhiên: A , D
Chọn ngẫu nhiên một số tự nhiên gồm bốn chữ số phân biệt được lập thành từ các chữ số 1,2,3,4,5,6,7 Tính xác suất để số được chọn lớn hơn 2018
A. 4/7
B. 6/7
C. 5/7
D. 1/7
Có A 7 4 = 7 . 6 . 5 . 4 →n(Ω)=7.6.5.4
Số lớn hơn 2018 có 6.6.5.4
Xác suất P=6/7
Đáp án B