PB

Chọn ngẫu nhiên một số tự nhiên trong các số tự nhiên có bốn chữ số. Tính xác suất để số được chọn có ít nhất hai chữ số 8 đứng liền nhau.

A. 0,029

B. 0,019

C. 0,021

D. 0,017

CT
12 tháng 1 2018 lúc 3:22

Chọn A

Xét phép thử: “Chọn ngẫu nhiên một số tự nhiên trong các số tự nhiên có bốn chữ số”

Ta có 

Biến cố A: “Số được chọn có ít nhất hai chữ số 8 đứng liền nhau”.

Gọi số có 4 chữ số  a b c d ¯   là trong đó có ít nhất hai chữ số 8 đứng liền nhau, a ≠ 0

TH1: Có đúng hai chữ số 8 đứng liền nhau.

+) Số có dạng  88 c d ¯ : có 9.9 = 81 số.

 

+) Số có dạng  a 88 d ¯  hoặc  a b 88 ¯  : mỗi dạng có 8.9 = 72 số.

TH2: Có đúng ba chữ số 8 trong đó có ít nhất hai chữ số 8 đứng liền nhau.

+) Số có dạng  a 888 ¯ : có 8 số.

 

+) Số có dạng  8 b 88 ¯  hoặc  88 c 8 ¯ hoặc  888 d ¯ : Mỗi dạng có 9 số.

TH3: Cả 4 chữ số đều là chữ số 8: Có 1 số là số 8888

Do đó n(A) = 81 + 2.72 + 8 + 3.9 + 1 = 261

Xác suất cần tìm 

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết