Cho f( x ) = ax3+bx2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c. Chứng minh rằng f (1); f(2) là bình phương của một số nguyên.
Câu 5. (0,5 điểm)
Cho f(x) = ax3 + bx2 + cx + d trong đó a, b, c, d ∈ Z và thỏa mãn b =3a + c Chứng minh rằng f (1).f(-2) là bình phương của một số nguyên
Thay b=3a+c vào f(x) ta được:
f(x)=ax3+(3a+c)x2+cx+d
=ax3+3ax2+cx2+cx+d
Suy ra: f(1).f(2)=(a.13+3a.12+c.12+c.1+d)[a.(-2)3+3a.(-2)2+c.(-2)2+c.(-2)+d]
=(a+3a+c+c+d)(-8a+12a+4c-2c+d)
=(4a+2c+d)(4a+2c+d)
=(4a+2c+d)2
Mà a,b,c,d là số nguyên nên: f(1).f(2) là bình phương của 1 số nguyên
b) Cho f(x)=ax3+bx2+cx+d , trong đó a,b,c,d là hằng số và thoả mãn: b=3a+c, Chứng tỏ rằng: f(1)=f(2)
Thay b = 3a + c vào f(x) ta được:
f(x) = ax3 + (3a+c)x2 + cx + d
⇒ f(1) = a.13 + 3a + c.12+ c.1 + d
= a + 3a + c + c + d
= 4a + 2c + d
= 4a + 2c + d (1)
f(2) = a.23 + 3a + c.22 - c.2 + d
= 8a + 3a + 4c - 2c + d
= 4a + 2c + d (2)
Từ (1) và (2) ➩ f(1) = f(2) [= 4a + 2 + d]
cho f(x)=ax^3+bx^3+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1)*f|(-2) là bình phương của 1 số nguyên
Cho f(x)=ax3+bx2+cx+d trong đó a,b,c,d thuộc D và thỏa mãn b=3a+c. Chứng minh rằng f(1).f(2) là bình phương của 1 số nguyên
cho f(x)=ax3+bx2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c. Chứng minh rằng f(1),f(-2) là bình phương của một số nguyên.
Ai làm nhanh nhất mình k nha, mình đang cần gấp.
Cho f(x)= ax^3 + bx^2 + cx + d, trong đó a, b, c, d là hằng số và thỏa mãn: b= 3a + c. Chứng tỏ rằng; f(1) = f(-2)
Thay b = 3a + c vào f(x) = ax3 + bx2 + cx + d
Ta có: ax3 + (3a + c)x2 + cx + d = ax3 + 3ax2 + cx2 + cx + d
Lại có: f(1) = a . 13 + 3a . 12 + c . 12 + c . 1 + d = a + 3a + c + c + d = 4a + 2c + d (1)
và f(-2) = a . (-2)3 + 3a . (-2)2 + c. (-2)2 + c . (-2) + d = -8a + 12a + 4c - 2c + d = 4a + 2c + d (2)
Từ (1) và (2) => f(1) = f(-2) (đpcm)
Cho f(x) = ax3 + bx2 + cx +d trong đó a,b,c,d \(\in Z\) và thỏa mãn b=3a=c
Chứng minh rằng f(1) , f(-2) là bình phương của 1 số nguyên
giúp với !!!
Cho f(x)=ax3+bx2+cx+d trong đó a, b, c, d thuộc R và thỏa mãn b=3a+c
Chứng minh rằng f(1) và f(-2) là bình phương của một số nguyên
Giúp với đang cần gấp
có sai đề ko bạn
phải là f(1).f(-2) là bình phương của 1 số nguyên chứ
Cho hàm số f ( x ) = a x 3 + b x 2 + c x + d thỏa mãn a,b,c,dÎR; a > 0 và d > 2019 8 a + 4 b + 2 x + d - 2019 < 0 . Số cực trị của hàm số y = | f ( x ) - 2019 | bằng
A. 3
B. 2
C. 1
D. 5