Những câu hỏi liên quan
MH
Xem chi tiết
HN
Xem chi tiết
NT
20 tháng 3 2023 lúc 10:16

a: góc OAS+góc OBS=180 độ

=>OASB nội tiếp

b: ΔOMN cân tại O

mà OI là trung tuyến

nên OI vuông góc IS

góc OIS=góc OAS=góc OBS=90 độ

=>O,A,I,S,B cùng nằm trên đường tròn đường kính OS

=>góc OBI=góc OAI

c: Xet ΔSBM và ΔSNB có

góc SBM=góc SNB

góc NSB chung

=>ΔSBM đồng dạng với ΔSNB

=>SB^2=SM*SN

Bình luận (0)
AL
Xem chi tiết
NT
2 tháng 3 2023 lúc 7:40

a: góc ABK=1/2*sđ cung AK=1/2*180=90 độ

=>BK vuông góc AB

=>BK//CH

góc ACK=1/2*sđ cung AK=1/2*180=90 độ

=>CE vuông góc AB

=>CH//BK

mà BK//CH

nên BHCK là hình bình hành

b: Vì M là trung điểm của BC nên M là trung điểm của HK

G là trọng tâm của ΔABC nên AG=2/3AM

=>G là trọng tâm của ΔAHK

=>H,G,O thẳng hàng

Bình luận (0)
PL
Xem chi tiết
PL
24 tháng 12 2021 lúc 17:31

Giúp mình giải 3 với 4 với mn

 

Bình luận (0)
TN
Xem chi tiết
QN
Xem chi tiết
MP
23 tháng 4 2023 lúc 19:10

a) Để tìm tọa độ tâm và bán kính của đường tròn ©, ta cần viết lại phương trình của nó dưới dạng chuẩn:
\begin{align*}
x^2 + y^2 - 2x + 6y - 2 &= 0 \
\Leftrightarrow (x-1)^2 + (y+3)^2 &= 14
\end{align*}
Vậy, tọa độ tâm của đường tròn © là $(1,-3)$ và bán kính của đường tròn © là $\sqrt{14}$.

b) Đường tròn có tâm $I(4,3)$ và đi qua $A(-4,1)$ có phương trình là:
$$(x-4)^2 + (y-3)^2 = (-4-4)^2 + (1-3)^2 = 20$$

c) Để tìm phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d: 3x+4y-4=0$ tại hai điểm $M$ và $N$ sao cho $MN=6$, ta có thể làm như sau:

Tìm giao điểm $H$ của đường thẳng $d$ và đường vuông góc với $d$ đi qua $I$.Tìm hai điểm $M$ và $N$ trên đường thẳng $d$ sao cho $HM=HN=3$.Xây dựng đường tròn (C') có tâm là $I$ và bán kính bằng $IN=IM=\sqrt{3^2+4^2}=5$.

Để tìm giao điểm $H$, ta cần tìm phương trình của đường thẳng vuông góc với $d$ đi qua $I$. Đường thẳng đó có phương trình là:
$$4x - 3y - 7 = 0$$
Giao điểm $H$ của đường thẳng này và $d$ có tọa độ là $(\frac{52}{25}, \frac{9}{25})$.

Để tìm hai điểm $M$ và $N$, ta có thể sử dụng công thức khoảng cách giữa điểm và đường thẳng. Khoảng cách từ điểm $H$ đến đường thẳng $d$ là:
$$d(H,d) = \frac{|3\cdot \frac{52}{25} + 4\cdot \frac{9}{25} - 4|}{\sqrt{3^2+4^2}} = \frac{1}{5}$$
Vậy, hai điểm $M$ và $N$ cách $H$ một khoảng bằng $\frac{3}{5}$ và $\frac{4}{5}$ đơn vị theo hướng vuông góc với $d$. Ta có thể tính được tọa độ của $M$ và $N$ như sau:
$$M = \left(\frac{52}{25} - \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{3}{5}\cdot 3\right) = \left(\frac{12}{25}, \frac{54}{25}\right)$$

$$N = \left(\frac{52}{25} + \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{4}{5}\cdot 3\right) = \left(\frac{92}{25}, \frac{27}{5}\right)$$
Cuối cùng, phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d$ tại hai điểm $M$ và $N$ sao cho $MN=6$ là:
$$(x-4)^2 + (y-3)^2 = 5^2$$

Bình luận (0)
QN
Xem chi tiết
GB
23 tháng 4 2023 lúc 22:28
Bình luận (0)
QP
23 tháng 4 2023 lúc 22:30

Tên quen ta :))

Bình luận (0)
NT
23 tháng 4 2023 lúc 23:14

a: (C): x^2+y^2-2x+6y-2=0

=>x^2-2x+1+y^2+6y+9-12=0

=>(x-1)^2+(y+3)^2=12

=>I(1;-3);\(R=2\sqrt{3}\)

b: I(1;-3); A(-4;1)

=>\(IA=\sqrt{\left(-4-1\right)^2+\left(1+3\right)^2}=\sqrt{34}\)

(C1): \(\left(x-1\right)^2+\left(y+3\right)^2=34\)

Bình luận (0)
QN
Xem chi tiết
NT
24 tháng 4 2023 lúc 8:39

loading...

Bình luận (0)
DN
Xem chi tiết