Những câu hỏi liên quan
H24
Xem chi tiết
NL
4 tháng 12 2021 lúc 15:57

a.

\(u_n=\dfrac{1}{\left(2-1\right)\left(2+1\right)}+\dfrac{1}{\left(3-1\right)\left(3+1\right)}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)

\(=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(n-2\right)n}+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n-2}-\dfrac{1}{n}+\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)\)

\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)

\(\Rightarrow\lim u_n=\lim\left(\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\right)=\dfrac{1}{2}.\dfrac{3}{2}=\dfrac{3}{4}\)

Bình luận (1)
NL
4 tháng 12 2021 lúc 16:00

b.

\(u_n=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(=1-\dfrac{1}{n+1}\)

\(\Rightarrow\lim u_n=\lim\left(1-\dfrac{1}{n+1}\right)=1\)

Bình luận (0)
NL
4 tháng 12 2021 lúc 16:02

c.

\(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)

\(\Rightarrow\dfrac{1}{1+2+...+n}=\dfrac{2}{n\left(n+1\right)}=\dfrac{2}{n}-\dfrac{2}{n+1}\)

\(\Rightarrow u_n=1+\dfrac{2}{2}-\dfrac{2}{3}+\dfrac{2}{3}-\dfrac{2}{4}+...+\dfrac{2}{n}-\dfrac{2}{n+1}\)

\(=1+1-\dfrac{2}{n+1}=2-\dfrac{2}{n+1}\)

\(\Rightarrow\lim u_n=\lim\left(2-\dfrac{2}{n+1}\right)=2\)

Bình luận (0)
VD
Xem chi tiết
TD
2 tháng 1 2018 lúc 20:13

progrỉnam bai1;

var n,i:longint;

s:real;

begin

write('N= ');readln(n);

s:=0;

for i:=1 to n do

s:=s+1/i*(i+1);

writeln('Tong la ',s);

readln

end.

Bình luận (0)
TN
3 tháng 1 2018 lúc 6:22

1) var n,i:integer;

s:real;

begin

write('n=');readln(n);

s:=0;

for i:=1 to n do s:=s+(1/(i*(i+1)));

writeln(' Tong la: ',s);

readln;

end.

2) var n,i:integer;

s:real;

begin

write('n=');readln(n);

s:=0;

for i:=1 to n do s:=s+(1/((2*i)-1));

writeln(' Tong la: ',);

readln;

end.

Bình luận (0)
H24
Xem chi tiết
TD
20 tháng 3 2018 lúc 21:20

B0:s:=0;i:=0;

B1:Nhập x từ bàn phím;

B2:Nếu i>x thì chuyển tới b4

B3:s:=s+1/i*(i+1);

i:=i+1;

và quay lại b2;

B5: TBKQ và KTTT

Bình luận (0)
BT
Xem chi tiết
PD
9 tháng 4 2018 lúc 20:03

\(A=\dfrac{3}{\left(1\cdot2\right)^2}+\dfrac{5}{\left(2\cdot3\right)^2}+\dfrac{7}{\left(3\cdot4\right)^2}+...+\dfrac{2n+1}{\left[n\left(n+1\right)\right]^2}\)

\(A=\dfrac{3}{1\cdot4}+\dfrac{5}{4\cdot9}+\dfrac{7}{9\cdot16}+...+\dfrac{2n+1}{n^2\cdot\left(n^2+2n+1\right)}\)

\(A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{n^2}-\dfrac{1}{n^2+2n+1}\)

\(A=1-\dfrac{1}{n^2+2n+1}\)

\(A=\dfrac{n\left(n+2\right)}{\left(n+1\right)^2}\)

Bình luận (0)
DN
Xem chi tiết
NH
12 tháng 8 2017 lúc 11:25

1) Ta có :

\(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)

Vậy \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\rightarrowđpcm\)

2) \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+............+\dfrac{1}{99.100}\)

\(\Leftrightarrow A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+......+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Leftrightarrow A=1-\dfrac{1}{100}\)

\(\Leftrightarrow A=\dfrac{99}{100}\)

Bình luận (1)
NA
Xem chi tiết
TA
9 tháng 3 2022 lúc 18:46

= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100

= 1/1 - 1/100

= 99/100

Học từ lớp 4 rồi :V

Bình luận (0)
TL
Xem chi tiết
EJ
14 tháng 8 2017 lúc 16:29

a, \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)

\(\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)

\(\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)

\(90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)

\(\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\) \(=-88\)

\(x+\dfrac{206}{100}=\dfrac{-5}{176}\)

\(x=\dfrac{-5}{176}-\dfrac{206}{100}\)

\(x=\dfrac{-9198}{4400}\)

Bình luận (0)
JP
14 tháng 8 2017 lúc 16:31

a) \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=90-89\)

\(\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=1\)

\(\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)=\dfrac{1}{2}\)

\(x+\dfrac{206}{100}=5\)

\(x=5-\dfrac{206}{100}\)

\(x=\dfrac{147}{50}\)

Vậy \(x=\dfrac{147}{50}\)

Bình luận (0)
HV
Xem chi tiết
N2
20 tháng 3 2022 lúc 21:39

\(x\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ x\cdot\left(1-\dfrac{1}{50}\right)=1\\ \dfrac{49}{50}x=1\\ x=1:\dfrac{49}{50}\\ x=\dfrac{50}{49}\)

Bình luận (0)
HV
Xem chi tiết
VD
20 tháng 3 2022 lúc 21:46

\(x.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)=1\\ \Rightarrow x.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ \Rightarrow x.\left(1-\dfrac{1}{50}\right)=1\\ \Rightarrow x.\dfrac{49}{50}=1\\ \Rightarrow x=1:\dfrac{49}{50}\\ \Rightarrow x=\dfrac{50}{49}\)

Bình luận (0)