Những câu hỏi liên quan
DF
Xem chi tiết
LN
3 tháng 1 2021 lúc 22:05

Áp dụng BĐT cosi, ta có

\(\sqrt{3a+1}=\dfrac{1}{2}\sqrt{4\left(3a+1\right)}\le\dfrac{1}{2}.\dfrac{4+3a+1}{2}=\dfrac{3a+5}{4}\)

CMTT, ta có \(\sqrt{3b+1}\le\dfrac{3b+5}{4};\sqrt{3c+1}\le\dfrac{3c+5}{4}\)

Từ đó suy ra \(K\le\dfrac{3\left(a+b+c\right)+15}{4}=6\)

Dấu "=" xảy ra khi a=b=c=1

Vậy...

Bình luận (0)
LN
3 tháng 1 2021 lúc 22:13

ta có BĐT \(\sqrt{3a+1}\ge\dfrac{a\left(\sqrt{10}-1\right)}{3}+1\)

\(\Leftrightarrow a\left(3-a\right)\ge0đúng\forall a\)

CMRTT, ta có

\(\sqrt{3b+1}\ge\dfrac{b\left(\sqrt{10}-1\right)}{3}+1\)

\(\sqrt{3c+1}\ge\dfrac{c\left(\sqrt{10}-1\right)}{3}+1\)

Do đó \(K\ge\dfrac{\left(a+b+c\right)\left(\sqrt{10}-1\right)}{3}+3=\sqrt{10}+2\)

Dấu "=" xảy ra khi a=3, b=c=0

Vậy...

Bình luận (1)
HG
Xem chi tiết
PP
Xem chi tiết
NH
Xem chi tiết
IU
Xem chi tiết
TN
19 tháng 5 2017 lúc 14:45

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

Bình luận (0)
H24
9 tháng 8 2020 lúc 9:26

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

Bình luận (0)
 Khách vãng lai đã xóa
H24
9 tháng 8 2020 lúc 9:45

Đặt: \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)

=>     \(P=\frac{xy}{z^2+3xy}+\frac{yz}{x^2+3yz}+\frac{zx}{y^2+3zx}\)

=>     \(3P=\frac{3xy}{z^2+3xy}+\frac{3yz}{x^2+3yz}+\frac{3zx}{y^2+3zx}=1-\frac{z^2}{z^2+3xy}+1-\frac{x^2}{x^2+3yz}+1-\frac{y^2}{y^2+3zx}\)

Ta sẽ CM: \(3P\le\frac{9}{4}\)<=> Cần CM: \(\frac{x^2}{x^2+3yz}+\frac{y^2}{y^2+3zx}+\frac{z^2}{z^2+3xy}\ge\frac{3}{4}\)

Có:    \(VT\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

Ta sẽ CM: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{3}{4}\)

<=> \(4\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)

<=> \(4\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)

<=> \(x^2+y^2+z^2\ge xy+yz+zx\)

Mà đây lại là 1 BĐT luôn đúng => \(3P\le\frac{9}{4}\)=> \(P\le\frac{3}{4}\)

Vậy P max \(=\frac{3}{4}\)<=> \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
DN
Xem chi tiết
HN
12 tháng 7 2016 lúc 21:24

Ta có : \(\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ac\sqrt{b-4}}{abc}=\frac{\sqrt{c-2}}{c}+\frac{\sqrt{a-3}}{a}+\frac{\sqrt{b-4}}{b}\)

Áp dụng bất đẳng thức Cauchy, ta có : 

\(\frac{\sqrt{c-2}}{c}=\frac{\sqrt{2\left(c-2\right)}}{\sqrt{2}c}\le\frac{2+c-2}{2\sqrt{2}c}=\frac{1}{2\sqrt{2}}\)

\(\frac{\sqrt{a-3}}{a}=\frac{\sqrt{3\left(a-3\right)}}{\sqrt{3}a}\le\frac{3+a-3}{2\sqrt{3}a}=\frac{1}{2\sqrt{3}}\)

\(\frac{\sqrt{b-4}}{b}=\frac{\sqrt{4\left(b-4\right)}}{2b}\le\frac{4+b-4}{4b}=\frac{1}{4}\)

\(\Rightarrow\frac{\sqrt{c-2}}{c}+\frac{\sqrt{a-3}}{a}+\frac{\sqrt{b-4}}{b}\le\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+\frac{1}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}c-2=2\\b-4=4\\a-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}c=4\\b=8\\a=6\end{cases}}\)

Vậy giá trị lớn nhất của biểu thức là \(\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+\frac{1}{4}\Leftrightarrow\hept{\begin{cases}a=6\\b=8\\c=4\end{cases}}\)

Bình luận (0)
SS
12 tháng 7 2016 lúc 21:18

phá ra nha

sau đó bạn lm theo tek này 

\(\frac{\sqrt{c-2}}{c}=\frac{\sqrt{2\left(c-2\right)}}{\sqrt{2}c}\le\frac{\frac{c}{2}}{\sqrt{2}c}=\frac{1}{\sqrt{2}}\)

mấy cái kia tt nha

Bình luận (0)
IU
Xem chi tiết
TN
19 tháng 5 2017 lúc 22:11

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(3P=\frac{3\sqrt{ab}}{c+3\sqrt{bc}}+\frac{3\sqrt{bc}}{a+3\sqrt{bc}}+\frac{3\sqrt{ca}}{b+3\sqrt{ca}}\)

\(=3-\left(\frac{a}{a+3\sqrt{bc}}+\frac{b}{b+3\sqrt{ca}}+\frac{c}{c+3\sqrt{ab}}\right)\)

\(\le3-\left[\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}\right]\)

\(\le3-\left[\frac{\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)+3\left(ab+bc+ca\right)}\right]\)

\(\le3-\left[\frac{\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)+\frac{\left(a+b+c\right)^2}{3}}\right]=3-\frac{9}{4}=\frac{3}{4}\)

Đẳng thức xảy ra khi \(a=b=c\)

Bình luận (0)
AN
20 tháng 5 2017 lúc 8:11

Bạn Thắng Nguyễn chạy mà bị kiệt sức ở giai đoạn cuối để mình chạy tiếp sức phần còn lại nhé.

Từ  \(3-\left[\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\right]\)

\(\le3-\left[\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\frac{\left(a+b+c\right)^2}{3}}\right]=3-\frac{3}{4}=\frac{9}{4}\)

\(\Rightarrow P\le\frac{\frac{9}{4}}{3}=\frac{3}{4}\)

Bình luận (0)
PH
Xem chi tiết
H24
18 tháng 2 2020 lúc 8:03

Có: \(9=\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow3\ge ab+bc+ca\)

Từ đây: \(D=\Sigma_{cyc}\frac{ab}{\sqrt{c^2+3}}\le\Sigma_{cyc}\frac{ab}{\sqrt{c^2+ab+bc+ca}}\)

\(=\Sigma_{cyc}\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=\Sigma_{cyc}\sqrt{\frac{ab}{a+c}}.\sqrt{\frac{ab}{b+c}}\le\Sigma_{cyc}\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

\(=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
CM
Xem chi tiết