Những câu hỏi liên quan
VV
Xem chi tiết
VT
14 tháng 1 2016 lúc 12:03

Ta có:3B\(\frac{1}{3}+\frac{1}{3}^2+\frac{1}{3}^3+...+\frac{1}{3}^{2003}+\frac{1}{3}^{2004}\)

B=\(\frac{1}{3}+\frac{1}{3}^2+\frac{1}{3}^3+..+\frac{1}{3}^{2003}+\frac{1}{3}^{2004}+\frac{1}{3}^{2005}\)

\(\Rightarrow\)2B=1-\(\frac{1}{3}^{2005}\)

\(\Rightarrow\)B=\(\frac{1-\frac{1}{3}^{2005}}{2}\)

\(\Rightarrow\)B=\(\frac{1-\frac{1}{3}^{2005}}{2}<\frac{1}{2}\)

\(\Rightarrow\)B<\(\frac{1}{2}\)

Bình luận (0)
HN
Xem chi tiết
LN
2 tháng 6 2015 lúc 9:59

a)ta có 3B=1+1/3+1/3^2+........+1/3^2003+1/3^2004

             B=    1/3+1/3^2+........+1/3^2003+1/3^2004+1/3^2005

suy ra 2B=1-1/3^2005

    suy ra B=\(\frac{1-\frac{1}{3}^{2005}}{2}\)

suy ra B=1/2-1/3^2005/2 bé hơn 1/2

từ đấy suy ra B bé hơn 1/2

Bình luận (0)
DT
Xem chi tiết
HK
Xem chi tiết
DH
3 tháng 3 2016 lúc 11:57

\(\Rightarrow3B=3+\frac{1}{3^1}+\frac{1}{3^2}+....+\frac{1}{3^{2004}}\)

\(\Rightarrow3B-B=\left(3+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\right)\)

\(\Rightarrow2B=3-\frac{1}{3^{2005}}\Rightarrow B=\left(3-\frac{1}{3^{2005}}\right):2\)

\(\Rightarrow\left(3-\frac{1}{3^{2005}}\right):2<\frac{1}{2}\Rightarrow B<\frac{1}{2}\)

Bình luận (0)
LT
3 tháng 3 2016 lúc 12:05

3B=1+1/3+1/32+...+1/32004

3B-B=1-1/32005

2B=1-1/32005

B=1/2-1/(32005.2)

Vậy B <1/2

Bình luận (0)
TL
30 tháng 4 2016 lúc 15:38

Hùng ơi sai rồi

3B=1+1/3+1/3^2+...+1/3^2004 chứ

Thay số 3 thành 1 vì 1/3*3=1 ko phải bằng 3

Bình luận (0)
HL
Xem chi tiết
LH
Xem chi tiết
HQ
6 tháng 3 2017 lúc 9:39

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)

\(\Leftrightarrow2B=3\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\right)\)

\(\Leftrightarrow2B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)

\(\Leftrightarrow2B-B=\left(1+\frac{1}{3}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\right)\)

\(\Leftrightarrow B=1-\frac{1}{3^{2005}}\)

\(\Leftrightarrow B=1-\frac{1}{3^{2005}}< \frac{1}{2}\)

Vậy \(B< \frac{1}{2}\) (Đpcm)

Bình luận (1)
H24
6 tháng 3 2017 lúc 8:34

\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+..+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\\ \)

\(C=3B=1+\dfrac{1}{3}+..+\dfrac{1}{3^{2004}}\)

\(C-B=1-\dfrac{1}{3^{3005}}\)

\(B=\dfrac{1}{2}-\dfrac{1}{2.3^{2005}}< \dfrac{1}{2}\)

Bình luận (0)
TL
21 tháng 7 2017 lúc 12:09

\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2005}}\)

\(3B=3\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2005}}\right)\)

\(3B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2004}}\)

\(3B-B=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2004}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2005}}\right)\)

\(2B=1-\dfrac{1}{3^{2005}}\)

\(B=\dfrac{1-\dfrac{1}{3^{2005}}}{2}\\ \)

\(\text{Mà }1-\dfrac{1}{3^{2005}}< 1\\ \Rightarrow\dfrac{1-\dfrac{1}{3^{2005}}}{2}< \dfrac{1}{2}\\ \Rightarrow B< \dfrac{1}{2}\left(ĐPCM\right)\)

Vậy \(B< \dfrac{1}{2}\)

Bình luận (0)
LH
Xem chi tiết
CU
30 tháng 1 2016 lúc 9:50

làm ơn tách ra giùm mk

Bình luận (0)
NN
Xem chi tiết
NN
19 tháng 2 2017 lúc 9:32

trả lời giup mk

Bình luận (0)
NQ
19 tháng 2 2017 lúc 9:42

Ta có:
B=1-1/2²-1/3²-...-1/2004²
=1-(1/2²+1/3²+...+1/2004²)
=1-[1/(2.2)+1/(3.3)+...+1/(2004.2004)]
Ta thấy:
1/(2.2)>1/(2.3)
1/(3.3)>1/(3.4)
...
1/(2004.2004)>1/(2004.2005)
Cộng từng vế của các bất đẳng thức trên ta được:
1/(2.2)+1/(3.3)+...+1/(2004.2004) > 1/(2.3)+1/(3.4)+...+1/(2004.2005) = 1/(3.2)+1/(4.3)+...+1/(2005.2004)
= (3-2)/(3.2)+(4-3)/(4.3)+...+(2005-2004)/(2005.2004)
=3/(3.2)-2/(3.2)+4/(4.3)-3/(4.3)+...+2005/(2005.2004)-2004/(2005.2004)
=1/2-1/3+1/3-1/4+...+1/2004-1/2005
=1/2-1/2005
=2003/4010
=> B>1-2003/4010=2007/4010>2007/4022028=1/2004
Hay B>1/2004

Bình luận (0)
SC
Xem chi tiết
CU
30 tháng 1 2016 lúc 9:26

nguyên một hàng mk đọc ko hỉu????????????

Bình luận (0)
OO
30 tháng 1 2016 lúc 9:29

không hiểu......>><

Bình luận (0)
NM
30 tháng 1 2016 lúc 9:29

khó hiểu quá

Bình luận (0)