Cho m, ,n, p là 3 cạnh của một tam giác. CMR: m2 + n2 + p2 < 2( mn+np+mp)
Chứng minh :
m3 + n3 + p3 -3mnp = (m+n+p)(m2 + n2 + p2 - mn - np - mp)
\(m^3+n^3+p^3-3mnp=\left(m^3+3m^2n+3mn^2+n^3\right)+p^3-3mnp-3m^2n-3mn^2=\left(m+n\right)^3+p^3-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left[\left(m+n\right)^2-\left(m+n\right)p-p^2\right]-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-mp-np-p^2\right)-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-mp-np-p^2-3mn\right)\)
\(=\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-mp\right)\)
m3+n3+p3-3nmp=(m+n+p)(m2+n2+p2-mn-np-mp)
chứng minh đẳng thức sau
\(m^3+n^3+p^3-3nmp\)
\(=\left(m+n\right)^3+p^3-3mn\left(m+n\right)-3mnp\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-pm-pn+p^2\right)-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+n^2+p^2-pm-pn-mn\right)\)
Cho tam giác mnp vuông tại m (mp>mn). O là điểm trên cạnh np sao cho op<om.Vẽ đường tròn (O) tiếp xúc với np tại e. Từ n vẽ tiếp tuyến với đường tròn (O) (F là tiếp điểm)
Cmr:
Năm điểm M, N, E, O,F cùng nằm trên một đường tròn
Gọi B là trung điểm của NP. Đường thẳng NF lần lượt cắt MB, ME ,MP tại các điểm D, K, I. Cmr: NK.IF=IK. NF
Cmr tam giác MDF cân
Cho tam giác MNP có MN<MP. Tia phân giác của góc M cắt NP tai D.Trên cạnh MP lấy E sao cho MN=ME
a/CmR: Tam giác MND=MEP
b/Nếu tam giác MNP có góc M=90 độ thì đó l tam giác j
a: Xét ΔMND và ΔMED có
MN=ME
\(\widehat{NMD}=\widehat{EMD}\)
MD chung
Do đó: ΔMND=ΔMED
b: Xét ΔMNP có \(\widehat{M}=90^0\)
nên ΔMNP vuông tại M
Cho tam giác MNP có MN = 1 m, NP = 3 m, độ dài cạnh MP là một số nguyên. Tính độ dài MP.
cho tam giác MNP,điểm I thuộc cạnh NP kẻ IK song song MP
trên cạnh MP lấy điểm H sao cho MH=IK
CMR a tam giác MKH =tam giác IKH
b IH song song MN
c gọi P là trung điểm của KH. chứng minh 3 điểm M,P,I thẳng hàng
tam giác MNP vuông tại M có MN < MP kẻ MQ vuông góc với NP (Q thuộc NP) trên cạnh NP lấy E sao cho ME=MQ. Qua E kẻ đường vuông góc với MP, cắt NP tại F. CMR: MG,KE,NP đồng quy( biết G là trung điểm của KP)
Bài 5. Cho tam giác MNP có MN = MP. Gọi I là trung điểm của cạnh NP.
a)CMR: tam giác MNI=tam giác MPI, từ đó chứng minh MI vuông góc với NP.
b)Trên tia đối của tia IM lấy điểm Q sao cho IQ = IM. CMR: MN // PQ.
c)Lấy điểm E trên MN và điểm F trên PQ sao cho ME = QF. Chứng minh rằng: Ba điểm E, I, F thẳng hàng.
mik đang càn gaaso :((
a: Xét ΔMNI và ΔMPI có
MN=MP
NI=PI
MI chung
Do đó: ΔMNI=ΔMPI
Ta có: ΔMNP cân tại M
mà MI là đường trung tuyến
nên MI là đường cao
b: Xét tứ giác MNQP có
I là trung điểm của MQ
I là trung điểm của NP
Do đó: MNQP là hình bình hành
Suy ra: MN//PQ
c: Xét tứ giác MEQF có
ME//QF
ME=QF
Do đó: MEQF là hình bình hành
Suy ra: MQ và EF cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của MQ
nên I là trung điểm của FE
hay E,I,F thẳng hàng
cho tam giác MNP vuông tại M (MP<MN).Trên cạnh MN lấy điểm Q sao cho MQ=MP,trên tia đối của tia MP lấy điểm R sao cho MR=MN.
a) CMR: PQ vuông góc với NR
b) CMR: RQ vuông góc với NP
giúp mik với !!!!!!!!!