\(m^3+n^3+p^3-3nmp\)
\(=\left(m+n\right)^3+p^3-3mn\left(m+n\right)-3mnp\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-pm-pn+p^2\right)-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+n^2+p^2-pm-pn-mn\right)\)
\(m^3+n^3+p^3-3nmp\)
\(=\left(m+n\right)^3+p^3-3mn\left(m+n\right)-3mnp\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-pm-pn+p^2\right)-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+n^2+p^2-pm-pn-mn\right)\)
Chứng minh hằng đẳng thức sau:
\(m^3+n^3+p^3-3nmp=\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-mp\right)..\)
Bài 1 : Phân tích các đa thức sau thành nhân tử
a) m3p + m2np - m2p2 - mnp2
b) ab( m2 + n2 ) + mn( a2 + b2 )
Bài 2 : Phân tích các đa thức sau thành nhân tử
a) (xy + ab )2 + ( ay - bx )2
b) m2( n - p ) + n2( p - m ) + p2?( m - n )
Bài 3 : Tìm y để giá trị của biểu thức 1 + 4y - y2 là lớn nhất
Bài 4 : Tìm x , biết : ( x3 - x2 ) - 4x2 + 8x - 4 = 0
Bài 5 : Phân tích đa thức sau thành nhân tử
A = ( a + b + c )3 - ( a + b - c )3 - ( b + c - a )3 - ( c + a - b )3
Bài 2: Tính giá trị của các biểu thức sau
a) A = 2 (m3 + n3) − 3 (m2 + n2), với m + n = 1;
b) B = 2m6 + 3m3n3 + n6 + n3, với m3 + n3 = 1;
c) C = (a − 1)3 − 4a (a + 1) (a − 1) + 3 (a − 1) (a2 + a + 1) với a = −3;
d) D = (y − 1) (y − 2) (1 + y + y2) (4 + 2y + y2) với y = 1
Bài 2 : Phân tích các đa thức sau thành nhân tử
a) (xy + ab )2 + ( ay - bx )2
b) m2( n - p ) + n2( p - m ) + p2?( m - n )
cho tam giác ABC có AB=5cm,AC=10cm,BC=10cm. M,N,P lần lượt là trung điểm của AB,AC,BC.
a) chứng minh MN, MP, NP là đường trung bình của tam giác ABC.
b) Tính MN, MP, NP
Viết các biểu thức dưới dạng lập phương của một tổng hoặc hiệu:
a) x 3 8 + 3 4 x 2 y 2 + 3 2 xy 4 + y 6 ;
b) m 3 + 9 m 2 n + 27m n 2 + 27 n 3 ;
c) 8 u 3 – 48 u 2 v + 96 uv 2 – 64 v 3 ;
d) ( z – t ) 3 + 15 ( z – t ) 2 + 75(z – t) + 125.
Cho tam giác MNP vuông ở M, đường cao MH, phân giác góc MNP cắt MP tại D. Cho biết MN = 6cm, MP = 8cm. a) Tính NP. Chứng minh Δ H M N và Δ H P M đồng dạng. b) Trên NP lấy điểm E sao cho PE = 4cm. Chứng minh N E 2 = N H . N P c) Tính diện tích Δ P E D
Cho tam giác MNP vuông tại M (MN<MP). Vẽ đường cao MH(H thuộc NP)
a. Chứng minh tam giác MNP đồng dạng với tam giác HNM
b. Chứng minh MN^2=NH.NP
c. Vẽ tia phân giác MK của góc NMP (K thuộc NP). Biết MN=7,2 cm và MP=9,6 cm. Tính độ dài các đoạn thẳng NP, NH và MK.
cho ΔMNP⊥N. biết MN=6cm,MP=10cm.kẻ MI là phân giác góc M(I ∈ NP)từ I kẻ IH⊥MP(H∊MP).
a,tính IN /IP
b, chứng minh MN . HI=MH.NP
c,tính diện tích ΔMNI
giúp mình với mai mình thi rồi:(