tính\(\frac{5^5.20^3-5^4.20^3+5^7.4^5}{\left(20+5\right)^3.4^5}\)
tính hợp lý :
a, \(2008.\left(\dfrac{1}{2007}-\dfrac{2009}{1004}\right)-2009.\left(\dfrac{1}{2007}-2\right)\)
b, \(\dfrac{5^5.20^3-5^4.20^3+5^7.4^5}{\left(20+5\right)^3.4^5}\)
a: \(=\dfrac{2008}{2007}-2009\cdot2-\dfrac{2009}{2007}+2009\cdot2\)
=-1/2007
b: \(=\dfrac{5^5\cdot5^3\cdot2^6-5^4\cdot5^3\cdot2^6+5^7\cdot2^{10}}{5^6\cdot2^{10}}\)
\(=\dfrac{5^8\cdot2^6-5^7\cdot2^6+5^7\cdot2^{10}}{5^6\cdot2^{10}}\)
\(=\dfrac{5^7\cdot2^6\left(5-1+2^4\right)}{5^6\cdot2^{10}}=\dfrac{5}{16}\cdot\dfrac{20}{1}=\dfrac{100}{16}=\dfrac{25}{4}\)
Bài 1: Tính giá trị biểu thức:
a, \(\frac{5^5.20^3-5^4.20^3+5^7.4^5}{\left(20+5\right)^3.4^5}\)
b, \(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
c, \(\frac{5.\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}\)
Bài 1: Tính giá trị biểu thức:
a, \(\frac{5^5.20^3-5^4.20^3+5^7.4^5}{\left(20+5\right)^3.4^5}\)
b, \(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
c, \(\frac{5.\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}\)
a) \(\frac{5^5.20^3-5^4.20^3+5^7.4^5}{\left(20+5\right)^3.4^5}\)
= \(\frac{5^5.\left(2^2.5\right)^3-5^4.\left(2^2.5\right)^3+5^7.\left(2^2\right)^5}{\left(5^2\right)^3.\left(2^2\right)^5}\)
= \(\frac{5^5.2^6.5^3-5^4.2^6.5^3+5^7.2^{10}}{5^6.2^{10}}\)
= \(\frac{5^8.2^6-5^7.2^6+5^7.2^{10}}{5^6.2^{10}}\)
= \(\frac{5^7.2^6.\left(5-1+2^4\right)}{5^6.2^{10}}\)
= \(\frac{5.20}{2^4}=\frac{25}{4}\)
\(\frac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}\)
\(=\frac{2^{12}\cdot3^{10}+2^3\cdot3\cdot5\cdot2^9\cdot3^9}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\frac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\frac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\left(6-1\right)}\)
\(=\frac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot5}=\frac{2^2}{5}=\frac{4}{5}\)
\(\frac{5\left(3\cdot7^{15}-19\cdot7^{14}\right)}{7^{16}+3\cdot7^{15}}\)
\(=\frac{3\cdot5\cdot7^{15}-5\cdot19\cdot7^{14}}{7^{16}+3\cdot7^{15}}\)
\(=\frac{5\cdot7^{14}\left(3\cdot7-19\right)}{7^{15}\left(7+3\right)}\)
\(=\frac{5\cdot7^{14}\cdot2}{7^{15}\cdot2\cdot5}=\frac{1}{7}\)
Bài 1: Tính giá trị các biểu thức sau
a, \(\left[2^{-3}-\left(\frac{3}{4}\right)^{-4}.\left(-\frac{1}{2}\right)^2\right]:\left[5-3.\left(\frac{4}{15}\right)^0\right]^{-2}\)
b, \(\frac{5^5.20^3-5^4.20^3+5^7.4^5}{\left(20+5\right)^3.4^5}\)
c, \(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
d, \(\frac{5.\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}\)
Tình hợp lý;:
a) \(\frac{6^3+3.6^2+3^3}{-13}\)
b) \(\frac{2^3+3.2^6-4^3}{2^3+3^2}\)
c) \(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
d) \(\frac{5^5.20^3-5^4.20^3+5^7.4^5}{\left(20+5\right)^3.4^5}\)
plzz Helpppp:<<<
a)\(\frac{6^3+3\cdot6^2+3^3}{-13}=\frac{3^3\cdot2^3+3^3\cdot2^2+3^3}{-13}=\frac{3^3\left(2^3+2^2+1\right)}{-13}=-3^3=-27\)
b) \(\frac{2^3+3\cdot2^6-4^3}{2^3+3^2}=\frac{8+3\cdot64-64}{8+9}=\frac{8+192-64}{17}=\frac{136}{17}=8\)
c) \(\frac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}=\frac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}=\frac{2^{11}\cdot3^{10}\left(2+2\cdot5\right)}{2^{11}\cdot3^{10}\cdot\left(2\cdot3^2-3\right)}=\frac{12}{18-3}=\frac{12}{15}\)
d) \(\frac{5^5\cdot20^3-5^4\cdot20^3+5^7\cdot4^5}{\left(20+5\right)^3\cdot4^5}=\frac{5^5\cdot20^3-5^4\cdot20^3+20^3\cdot20^2\cdot5^2}{5^6\cdot4^5}=\frac{20^3\left(5^5-5^4+5^4\cdot4^2\right)}{20^5\cdot5}\)\(=\frac{5^4\left(5-1+16\right)}{20^2\cdot5}=\frac{5^4\cdot20}{20^2\cdot5}=\frac{5^3}{20}=\frac{5^3}{5\cdot4}=\frac{25}{4}\)
Bài giải
a)\(\frac{6^3+3\cdot6^2+3^3}{-13}=\frac{3^3\cdot2^3+3^3\cdot2^2+3^3}{-13}=\frac{3^3\left(2^3+2^2+1\right)}{-13}=-3^3=-27\)
b) \(\frac{2^3+3\cdot2^6-4^3}{2^3+3^2}=\frac{8+3\cdot64-64}{8+9}=\frac{8+192-64}{17}=\frac{136}{17}=8\)
c) \(\frac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}=\frac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}=\frac{2^{11}\cdot3^{10}\left(2+2\cdot5\right)}{2^{11}\cdot3^{10}\cdot\left(2\cdot3^2-3\right)}=\frac{12}{18-3}=\frac{12}{15}\)
d) \(\frac{5^5\cdot20^3-5^4\cdot20^3+5^7\cdot4^5}{\left(20+5\right)^3\cdot4^5}=\frac{5^5\cdot20^3-5^4\cdot20^3+20^3\cdot20^2\cdot5^2}{5^6\cdot4^5}=\frac{20^3\left(5^5-5^4+5^4\cdot4^2\right)}{20^5\cdot5}\)\(=\frac{5^4\left(5-1+16\right)}{20^2\cdot5}=\frac{5^4\cdot20}{20^2\cdot5}=\frac{5^3}{20}=\frac{5^3}{5\cdot4}=\frac{25}{4}\)
Bài 1: Tính giá trị các biểu thức sau
a,\(\left[2^{-3}-\left(\frac{3}{4}\right)^{-4}.\left(-\frac{1}{2}\right)^2\right]:\left[5-3\left(\frac{4}{15}\right)^0\right]^{-2}\)
b, \(\frac{2^3+3.2^6-4^3}{2^3+3^2}\)
c, \(\frac{5^5.20^3-5^4.20^3+5^7.4^5}{\left(20+5\right)^3.4^5}\)
d, \(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
e, \(\frac{5.\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}\)
f, \(\frac{3^3.\left(0,5\right)^5}{\left(1,5\right)^4}\)
Mk cần gấp
f) \(\frac{3^3.\left(0,5\right)^5}{\left(1,5\right)^4}=\frac{3^3.\left(0,5\right)^5}{\left[3.\left(0,5\right)\right]^4}=\frac{3^3.\left(0,5\right)^5}{3^4.\left(0,5\right)^4}=\frac{0,5}{3}=\frac{1}{6}\)
b) \(\frac{2^3+3.2^6-4^3}{2^3+3^2}=\frac{2^3.\left(1+3.2^3-2^3\right)}{2^3+3^2}=\frac{2^3.17}{17}=2^3=8\)
Các phần còn lại tương tự, bạn tự làm nhé !
(*) Lưu ý ở những bài rút gọn có chứa lũy thừa thì bạn đưa số đó về số nguyên tố rồi thực hiện như bình thường .
VD : \(4^3=\left(2^2\right)^3=2^6\) ( đưa về số nguyên tố là 2 )
\(6^3=\left(2.3\right)^3=2^3.3^3\) ( đưa về tích hai số nguyên tố )
Tính :
5^5.20^3-5^4-20^3+5^7.4^5
( 20 + 5 ) ^3 . 4^5
Tính:
a) \(\dfrac{5^4.20^4}{25^3.4^5}\)
b) \(\left(\dfrac{-10}{3}\right)^5\) .\(\left(\dfrac{-6}{5}\right)^4\)
a) `(5^4 . 20^4)/(25^3 .4^5)`
`=(5^4 . (5.4)^4)/((5^2)^3 .4^5)`
`= (5^4 . 5^4 . 4^4)/(5^6 . 4^5)`
`= (5^2)/4=25/4`
b) `(-10/3)^5 . (-6/5)^4`
`=-10/3 . [(-10/3) . (-6/5)]^4`
`= -10/3 . [ (-5.2 . (-2).3)/(3.5)]^4`
`=-10/3 . 4^4`
`=-2560/3`
A) \(=\dfrac{\left(5.20\right)^4}{\left(25.4\right)^5}=\dfrac{100^4}{100^5}=\dfrac{1}{100}\)
B)=\(\left(\dfrac{-10}{3}\right).\left(\dfrac{-10}{3}\right)^4.\left(\dfrac{-6}{5}\right)^4\)
=\(\left(\dfrac{-10}{3}\right).\left(\dfrac{-10}{3}.\dfrac{-6}{5}\right)^4\)
=\(\left(\dfrac{-10}{3}\right).\left(\dfrac{60}{15}\right)^4\)
=\(\left(\dfrac{-10}{3}\right).4^4\)
=\(\left(\dfrac{-10}{3}\right).256\)
=\(\dfrac{-2650}{3}\)
a) \(\dfrac{5^4.20^4}{25^3.4^5}=\dfrac{5^4.4^4.5^4}{5^6.4^5}=\dfrac{5^2}{4}=\dfrac{25}{4}\)
b) \(\left(\dfrac{-10}{3}\right)^5.\left(\dfrac{-6}{5}\right)^4=\left(\dfrac{-10}{3}\right)^4.\left(\dfrac{-10}{3}\right).\left(\dfrac{-6}{5}\right)^4=\left(\dfrac{-10}{3}.\dfrac{-6}{5}\right)^4.\left(\dfrac{-10}{3}\right)=\left(4\right)^4.\left(\dfrac{-10}{3}\right)=256.\left(\dfrac{-10}{3}\right)=\dfrac{-2560}{3}\)
tính
a) \(\frac{5^4.20^4}{25^5.4^5}\)
b) \(\left(\frac{-10}{3}\right)^5.\left(\frac{-6}{5}\right)^4\)