Cho A = ( 1 + 1/2 + 1/3 + ..... + 1/98 ) . 2 . 3 . 4 . ... . 98
Chứng minh A là số nguyên.
cho A= 1+2^2 + 2^3+ 2^4+2^5 + …+ 2^ 96+2^97 + 2^98
chứng minh chí hết cho 7
Cái đầu là 1 hay 21 em? Chứ 1 thì không chia hết
\(A=1+2^1+2^2+2^3+2^4+2^5+...+2^{96}+2^{97}+2^{98}\\ =1.\left(1+2^1+2^2\right)+2^3.\left(1+2^1+2^2\right)+...+2^{96}.\left(1+2^1+2^2\right)\\ =1.7+2^3.7+...+2^{96}.7\\ =\left(1+2^3+...+2^{96}\right).7⋮7\)
Đây mới đúng và đủ đề em hi
cho A= 1+7+7^2+7^3+...+7^98
chứng minh rằng A chia hết cho7. Chứng minh 6A+1 là một lũy thừa của 7
1/ Tính A: 1+(1+2)+(1+2+3)+.........(1+2+3+.....+98) phần 1.98+2.97+3.96+...........+98.1
2/ Tìm số nguyên tố p, sao cho p+2 và p+4 cũng là số nguyên tố.
1) Tìm cặp số nguyên x,y thỏa mãn 2.(x.y- 3) =x
2)Tính nhanh A= 3/10 +3/30 + 3/60 +...+3/1900
3) Chứng minh rằng :1/5 + 1/6 +1/7 +...+ 1/17 < 2
4) Cho M = ( 1+ 1/2 +1/3 + 1/4+ ...+1/98).2.3.4....98. Chứng minh rằng M chia hết cho 99
Giusp mình với nha! Ai giải đúng mình sẽ tick ! Thank you!
1. Tìm 2 số nguyên tố x và y sao cho
x2 -2x+1=6y2-2x+2
2. a/b=1/50+1/51.....1/99 CHỨNG MINH a chia hết cho 149
3. Cho m=(1/1+1/2+1/3....+1/98)*2*3.....*98 CHỨNG MINH m chia hết cho 99
cho p là số nguyên tố lớn hơn 3
a) p + 2 cũng là số nguyên tố, chứng minh rằng p + 1 chia hết cho 6
b) chứng minh rằng p2 + 98 là là hợp số
c) chứng minh 8p2 + 1 là hợp số
bài 1 tính
A = 1+ 2 +2^2 +2^3 +...+2^2015/1-2^2016
bài 2 Tìm số nguyên n để giá trị biểu thức A = n + 5/ n+2 là số nguyên
bài 3
CMR : 4/3+ 10/9 + 28/27+ ... + 3^98+1/3^98<100
bài 4
CMR : 5^2/1.6 + 5^2/6.11 + 5^2/11.16 + ... + 5^2/26.31>1
2.
Ta có : \(A=\frac{n+5}{n+2}=\frac{n+2+3}{n+2}=1+\frac{3}{n+2}\)
để A là số nguyên thì \(\frac{3}{n+2}\)là số nguyên
\(\Rightarrow3⋮n+2\)
\(\Rightarrow\)n + 2 \(\in\)Ư ( 3 ) = { 1 ; -1 ; 3 ; -3 }
Lập bảng ta có :
n+2 | 1 | -1 | 3 | -3 |
n | -1 | -3 | 1 | -5 |
Vậy n \(\in\){ -1 ; -3 ; 1 ; -5 }
3.
\(\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}\)
\(=\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{9}\right)+\left(1+\frac{1}{27}\right)+...+\left(1+\frac{1}{3^{98}}\right)\)
\(=\left(1+1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{3^{98}}\right)\)
\(=97+\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)\)
gọi \(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)( 1 )
\(3B=1+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\)( 2 )
Lấy ( 2 ) trừ ( 1 ) ta được :
\(2B=1-\frac{1}{3^{98}}< 1\)
\(\Rightarrow B=\frac{1-\frac{1}{3^{98}}}{2}< \frac{1}{2}< 1\)
\(\Rightarrow97+\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)< 100\)
4.
đặt \(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)
\(5A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\)
\(5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\)
\(5A=1-\frac{1}{31}< 1\)
\(\Rightarrow A=\frac{1-\frac{1}{31}}{5}< \frac{1}{5}< 1\)
Ta có : \(2A=2.\left(1+2+2^2+2^3+...+2^{2015}+2^{2016}\right)\)
\(2A=2+2^2+2^3+2^4+...+2^{2016}+2^{2017}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}+2^{2017}\right)-\left(1+2+2^2+2^3+...+2^{2015}+2^{2016}\right)\)
\(A=2+2^3+2^4+2^5+...+2^{2016}+2^{2017}-1-2-2^2-2^3-...-2^{2015}-2^{2016}\)
\(A=2^{2017}-1\)
Bài 1: Cho 25 số nguyên, biết tích của 3 số bất kì đều là 1 số dương. Chứng minh rằng tất cả 25 số đó đều là số nguyên dương.
Bài 2: Cho m, n là các số nguyên dương. Biết:
A = 2 + 4 + 6 +...+ 2m / m
B = 2 + 4 + 6 +...+ 2n / n
Biết A<B, hãy so sánh m và n.
Bài 3: Cho S = 1 - 3 + 3^2 - 3^3 +...+ 3^98 - 3^99.
a) Chứng minh rằng S là bội của -20.
b) Tính S từ đó suy ra 3^100 chia 4 dư 1.
Bài 4: Cho a thuộc Z so sánh:
a) 35( a - 5 ) và 31( a - 5 )
b) 21( 7 – a ) và -25( 7 – a )
Ai làm nhanh mà đúng nhất mình TICK cho! Nhanh lên nhé, mai mình phải nộp rùi!!!
Bài 1: Em tham khảo tại đây nhé.
Câu hỏi của Nguyễn Tuyết Mai - Toán lớp 6 - Học toán với OnlineMath
a, Tìm các số nguyên x;y biết :
x * ( y-1) = (-11)
b, Cho tổng S = 1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^98-3^99
Chứng minh rằng S là bội của (-20)