Cho đa thức f(x)= 2x2 -8x+6. Chứng tỏ x=1 và x=3 là nghiệm của đa thức trên
Cho hai đa thức: f(x) = 9 -3x5 + 7x - 2x3 +3x5 + x2 – 3x -7x4
g(x) = x4 + 1 + 2x2 +7x4 + 2x3 - 3x- 2x2 - x
a) Thu gọn và sắp xếp các đa thức trên theo luỹ thừa giảm của biến.
b) Tính h(x) = f(x) + g(x)
c) Chứng tỏ đa thức h(x) không có nghiệm
a, \(f\left(x\right)=9-3x^5+7x-2x^3+3x^5+x^2-3x-7x^4=-7x^4-2x^3+x^2+4x+9\)
\(g\left(x\right)=x^4+1+2x^2+7x^4+2x^3-3x-2x^2-x=8x^4+2x^3-4x+1\)
b, Ta có : \(h\left(x\right)=f\left(x\right)+g\left(x\right)=-7x^4-2x^3+x^2+4x+9+8x^4+2x^3-4x+1\)
\(=x^4+x^2+10\)
c, Ta có : \(x^4\ge0\forall x;x^2\ge0\forall x;10>0\Rightarrow x^4+x^2+10>0\)
Vậy phương trình ko có nghiệm ( đpcm )
Kết luận cuối là Vậy đa thức h(x) ko có nghiệm ( đpcm ) nhé
Cho hai đa thức f ( x ) = 2 x 2 - 5 x - 3 và g ( x ) = - 2 x 2 - 2 x + 1 . Nghiệm của đa thức f ( x ) + g ( x ) = 0 là:
A. x = 5 3
B. x = - 7 2
C. x = - 2 7
D. x = - 3 5
Chọn C
Ta có f(x) + g(x) = (2x2 - 5x - 3) + (-2x2 - 2x + 1) = -7x - 2
Cho -7x - 2 = 0 ⇒ x = -2/7
Bài 1: Cho đa thức bậc nhất: f(x) = ax + b và g(x) = bx + a (a và b khác 0). Giả sử đa thức f(x) có nghiệm là x0, tìm nghiệm của đa thức g(x)
Bài 2: Chứng tỏ rằng f(x) = -8x4 + 6x3 - 4x2 + 2x - 1 không có nghiệm nguyên.
Bài 3: Cho đa thức f(x) = ax3 + bx2 + cx + d có giá trị nguyên với mọi x thuộc Z. Chứng tỏ rằng 6a và 2b là các số nguyên
Bài 2: Cho hai đa thức
f(x) = 3x + x3 + 2x2 + 4
g(x) = x3 + 3x + 1 – x2
a) Sắp xếp các đa thức trên theo lũy thừa giảm dần của biến.
b) Tính f(x) + g(x) và f(x) – g(x)
c) Chứng tỏ f(x) – g(x) không có nghiệm
ai giúp mk với :)) mk cảm ơn !
a: \(F\left(x\right)=x^3+2x^2+3x+4\)
\(G\left(x\right)=x^3-x^2+3x+1\)
b: \(F\left(x\right)+G\left(x\right)=2x^3+x^2+6x+5\)
\(F\left(x\right)-G\left(x\right)=3x^2+3\)
a)
F(x)=x3+2x2+3x+4F(x)=x3+2x2+3x+4
G(x)=x3−x2+3x+1
b)
F(x)+G(x)=2x3+x2+6x+5F(x)+G(x)=2x3+x2+6x+5
F(x)−G(x)=3x2+3
Bài 1. Chứng minh rằng:
a) Chứng tỏ rằng 3/2 và -1/3 là các nghiệm của đa thức P(x)=6x2 -7x- 3
b) Chứng tỏ rằng -1/2 và 3 là các nghiệm của đa thức 2x2 -5x- 3
a: 6x^2-7x-3=0
=>6x^2-9x+2x-3=0
=>(2x-3)(3x+1)=0
=>x=-1/3 hoặc x=3/2
=>ĐPCM
b: 2x^2-5x-3=0
=>2x^2-6x+x-3=0
=>(x-3)(2x+1)=0
=>x=-1/2 hoặc x=3
=>ĐPCM
Cho đa thức sau: $f(x)=2x^2-8x-64$ƒ (x)=2x2−8x−64
Các số nào là nghiệm của đa thức trên?
cách giải luôn nha
a. Tìm nghiệm của đa thức A(x)= 6-2x
b. Cho đa thức P(x)= x4+2x2+1
1. Tính P(1),P= \(\left(\dfrac{-1}{2}\right)\)
2. Chứng tỏ rằng đa thức P(x) không có nghiệm
a) A(x) = 0 ⇔ 6 - 2x = 0 ⇔ x = 3
Nghiệm của đa thức là x = 3
b)1. P(1) = \(1^4+2.1^2+1\) = 4
P(\(-\dfrac{1}{2}\)) = \(\left(-\dfrac{1}{2}\right)^4+2\left(-\dfrac{1}{2}\right)^2+1\) = \(\dfrac{25}{16}\)
Ta có: P(x) = \(\left(x^2+1\right)^2\)
Vì \(\left(x^2+1\right)^2\) ≥ 0
Nên P(x) = 0 khi \(x^2+1=0\) ⇔ \(x^2=-1\) (vô lý)
Vậy P(x) không có nghiệm
a) Đặt A(x)=0
\(\Leftrightarrow6-2x=0\)
\(\Leftrightarrow2x=6\)
hay x=3
Vậy: x=3 là nghiệm của đa thức A(x)
b)
1: Thay x=1 vào đa thức P(x), ta được:
\(P\left(1\right)=1^4+2\cdot1^2+1=1+2+1=4\)
Thay \(x=-\dfrac{1}{2}\) vào đa thức P(x), ta được:
\(P\left(-\dfrac{1}{2}\right)=\left(-\dfrac{1}{2}\right)^4+2\cdot\left(-\dfrac{1}{2}\right)^2+1=\dfrac{1}{16}+\dfrac{1}{2}+1=\dfrac{25}{16}\)
Bài 3: cho đa thức P(x)= 5x3 - x4 + 2x - x2 + x4 + 2x2 - 5x3 - 3
a, thu gọn tìm bậc của đa thức
b, Chứng tỏ X=-3 ; x=1 là các nghiệm của đa thức P(x)
c, Tìm nghiệm của đa thức Q(x) biết Q(x) + P(x) = x2 - x
Cần gấp
a. cậu thu gọn bằng cách dùng t/c kết hợp và giao hoán
b. cậu thay từng giá vào biểu thức vừa được rút gọn để tìm
c. thì.... tớ ko biết
cho đa thức f(x)=2x6+3x2+5x3-2x2+4x4+x4+1-4x3-x4
a) thu gọn , sắp xếp theo lũy thừa tăng dần , chỉ ra hệ số cao nhất , bậc và hệ số tự do của đa thức
b) tính f(-1)
c) chứng tỏ đa thức f(x) không nghiệm
a) \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4+x^4+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(4x^4+x^4-x^4\right)+\left(5x^3-4x^3\right)+\left(3x^2-2x^2\right)+1\)
\(f\left(x\right)=1+x^2+x^3+4x^4+2x^6\)
Hệ số cao nhất là 4, đa thức có bậc là 6, hệ số tự do là 1
b) Khi \(f\left(-1\right)\) thì đa thức trở thành:
\(f\left(-1\right)=2.\left(-1\right)^6+4.\left(-1\right)^4+\left(-1\right)^3+\left(-1\right)^2+1\)
\(f\left(-1\right)=2+4+-1+1+1\)
\(f\left(-1\right)=7\)
c) Vì \(2x^6+4x^4+x^3+x^2+1\ge0\) nên đa thức \(f\left(x\right)\) không có nghiệm