tìm các số nguyên dương x,y biết rằng 3/x-5-y/3=1/6
Tìm các số nguyên dương x,y biết:
\(\dfrac{x}{6}-\dfrac{5}{2y+1}=\dfrac{2}{3}\)
\(\dfrac{x}{6}-\dfrac{5}{2y+1}=\dfrac{2}{3}\)
\(\dfrac{x}{6}-\dfrac{5.2}{2y.2+1.2}=\dfrac{4}{6}\)(vì 2y + 1 là số lẻ)
\(\dfrac{x}{6}-\dfrac{10}{4y+2}=\dfrac{4}{6}\)
Để \(\dfrac{x}{6}-\dfrac{10}{4y+2}=\dfrac{4}{6}\)thì y = 1 để cùng mẫu số
Khi đó ta có\(\dfrac{x}{6}-\dfrac{10}{4y+2}=\dfrac{4}{6}\) = \(\dfrac{x}{6}-\dfrac{10}{4+2}=\dfrac{4}{6}\) = \(\dfrac{x}{6}-\dfrac{10}{6}=\dfrac{4}{6}\)
Vì 4+10 = 14 => x = 14
Vậy y = 1; x = 14
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
1) Cho x, y, z là ba số dương phân biệt. Hãy tìm tỉ số x/y ,biết rằng:
y/x-z=x+y/z=x/y
2) Tìm các số x, y, z , biết rằng
x-1/2=y+3/4=z-5/6 và 5z-3x-4y=50
1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố
2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố
3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương
4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p
5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab +c ( a + b )
Chứng minh: 8c + 1 là số cp
6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3
Chứng minh: 9x – 1 là lập phương đúng
7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c
8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1
Chứng minh: ( x + y )^2 + ( xy – 1 )^2 không phải là số cp
9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2
10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương
11, Cho các số nguyên n thuộc Z, CM:
A = n^5 - 5n^3 + 4n \(⋮\)30
B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ
C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42
1, Tìm \(x,y\in N\), biết rằng :\(x\le y\le z\)và : 2x + 3y + 5z = 156
2, Tìm các số nguyên dương x sao cho : 3x + 4x = 5x
3, Tìm các số nguyên x,y sao cho : 5x3 = 3y +317
Tìm các số nguyên x;y biết rằng :
1/x - y/6 = 1/3
Ta có : \(\frac{1}{x}-\frac{y}{6}=\frac{1}{3}\Leftrightarrow\frac{1}{x}=\frac{1}{3}+\frac{y}{6}\Leftrightarrow\frac{1}{x}=\frac{2+y}{6}\)
\(\Leftrightarrow\left(2+y\right)x=6\Leftrightarrow2+y;x\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2 + y | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
y | 4 | -8 | 1 | -5 | 0 | -4 | -1 | -3 |
\(\frac{1}{x}-\frac{y}{6}=\frac{1}{3}\)
\(\Rightarrow\frac{1}{x}=\frac{1}{3}+\frac{y}{6}\)
\(\Rightarrow\frac{1}{x}=\frac{2}{6}+\frac{y}{6}\)
\(\Rightarrow\frac{1}{x}=\frac{2+y}{6}\)
\(\Rightarrow x\left(2+y\right)=6\)
Ta có bảng sau :
x | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2+y | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
y | 4 | -8 | 1 | -5 | 0 | -4 | -1 | -3 |
Vậy ( x ; y ) = { ( 1 ; 4 ) , ( -1 ; -8 ) , ( 2 ; 1 ) , ( -2 ; -5 ) , ( 3 ; 0 ) , ( -3 ; -4 ) , ( 6 ; -1 ) , ( -6 ; -3 ) }
ta có: \(\frac{1}{x}-\frac{y}{6}\)=\(\frac{1}{3}\)<=>\(\frac{1}{x}\)=\(\frac{1}{3}\)+\(\frac{y}{6}\)
<=>\(\frac{1}{x}\)=\(\frac{2+y}{6}\)<=>x(2+y)=6
Mà x, y nguyên => x và y+2 ∈Ư(6)={±1;±2;±3;±6}
thay vào ta tìm được các cặp x,y.
1.tìm x,y biết: |x^2-1|+2 = 6 / [9(y+1)^2+3]
2.tìm các số nguyên dương x,y thõa mãn:
(y+1)^2 = 32* y/x
tìm các số nguyên dương x y biết:(x+y)^5 < 100.x+3
Sửa đề: Tìm cac số nguyên dương x,y biết \(\left(x+y\right)^5\le100x+3\)
Vì x,y \(\in\) N* nên \(\left(x+y\right)^5\le100x+3< 100x+100y=100\left(x+y\right)\)
\(\Rightarrow\left(x+y\right)^4\le100< 4^4\)
=> x + y < 4
Mà \(x+y\ge2\) (vì x,y \(\in\) N*)
\(\Rightarrow\orbr{\begin{cases}x+y=2\\x+y=3\end{cases}}\)
+) x + y = 2 => x = y = 1 (thỏa mãn)
+) x + y = 3 => \(\orbr{\begin{cases}x=1,y=2\left(tm\right)\\x=2,y=1\left(ktm\right)\end{cases}}\)
Vậy x=1,y=1 hoặc x=1,y=2
1:tìm các số nguyên x,y biết:
xy - 3y + y = 20
2:tìm các số nguyên x,thỏa mãn:
(x - 3 ).(x + 4) >0
3:Cho S=1-5+52-53+....+598-599
a)Tính S.
b) Chứng minh rằng :5100 chia cho 6 dư 1
( giúp mk với,mk đang cần gấp ^^)
Bài 2:
Ta có: (x-3)(x+4)>0
=>x>3 hoặc x<-4
Bài 3:
a: \(5S=5-5^2+...+5^{99}-5^{100}\)
\(\Leftrightarrow6S=1-5^{100}\)
hay \(S=\dfrac{1-5^{100}}{6}\)