chứng minh \(\dfrac{n+19}{n-2}\) tối giản
Chứng minh rằng các phân số sau tối giản
a) \(\dfrac{2n+7}{2n+3}\) (n ∈ N)
b)\(\dfrac{6n+5}{8n+7}\)(n ∈ N)
c)\(\dfrac{2^{2024}+3}{2^{2023}+1}\) tối giản
a: Gọi d=ƯCLN(2n+7;2n+3)
=>2n+7 chia hết cho d và 2n+3 chia hết cho d
=>2n+7-2n-3 chia hết cho d
=>4 chia hết cho d
mà 2n+7 lẻ
nên d=1
=>PSTG
b: Gọi d=ƯCLN(6n+5;8n+7)
=>4(6n+5)-3(8n+7) chia hết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
Chứng minh các phân số sau tối giản:
\(\dfrac{n+7}{n+8},\dfrac{4n+7
}{n+2},\dfrac{5n+12}{3n+7}\)
a, Gọi d là UCLN (n+7; n+8) (d ∈ Z)
Ta có n+7 ⋮ d ; n+8 ⋮ d ➞ (n+7) - (n+8) ⋮ d ⇒ -1 ⋮ d
⇒ d ∈ Ư (-1) = (+-1)
⇒ \(\dfrac{\left(n+7\right)}{n+8}\) là phân số tối giản
từ đo bạn tự làm được không?
câu b nhân mẫu lên 4 thành 4n + 8, ta có \(\dfrac{\left(4n+7\right)}{4n+8}\) rồi bạn trừ tử cho mẫu sẽ được -1
dạng này bạn chỉ cần cố gắng nhân mẫu hoặc tử hoặc cả hai để khi trừ tử cho mẫu thì được kết quả là 1 hoặc -1 là đc
Giải:
\(\dfrac{n+7}{n+8}\)
Gọi \(ƯCLN\left(n+7;n+8\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+8⋮d\end{matrix}\right.\)
\(\Rightarrow\left(n+8\right)-\left(n+7\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{n+7}{n+8}\) là p/s tối giản
\(\dfrac{4n+7}{n+2}\)
Gọi \(ƯCLN\left(4n+7;n+2\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}4n+7⋮d\\n+2⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4n+7⋮d\\4.\left(n+2\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4n+7⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow\left(4n+8\right)-\left(4n+7\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{4n+7}{n+2}\) là p/s tối giản
\(\dfrac{5n+12}{3n+7}\)
Gọi \(ƯCLN\left(5n+12;3n+7\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}5n+12⋮d\\3n+7⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3.\left(5n+12\right)⋮d\\5.\left(3n+7\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}15n+36⋮d\\15n+35⋮d\end{matrix}\right.\)
\(\Rightarrow\left(15n+36\right)-\left(15n+35\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{5n+12}{3n+7}\) là p/s tối giản
Chúc bạn học tốt!
chứng minh phân số sau là phân số tối giản: \(\dfrac{2.n^2+n+1}{n}\)
1Đặt UCLN(\(2n^2\) + n + 1;n) = d
=> \(2n^2\) + n + 1 ⋮ d ; n ⋮ d
=> (2n + 1) n ⋮ d
<=>\(2n^2\) + n ⋮ d
<=>(2n2 + n + 1) - (2n2 + n) ⋮ d
<=> 1⋮d
=> d ϵƯ(1)=1
=>UCLN(\(2n^2\) + n + 1;n) =1
=>dpcm
hum biết nhe
khó qué
tui mới L4
HIHI
Chứng minh phân số tối giản
\(A=\dfrac{2n+3}{n^2+3n+2}\)
Gọi \(d=ƯC\left(2n+3;n^2+3n+2\right)\)
\(\Rightarrow2\left(n^2+3n+2\right)-n\left(2n^2+3\right)⋮d\)
\(\Rightarrow3n+4⋮d\)
\(\Rightarrow3\left(2n+3\right)-2\left(3n+4\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(2n+3\) và \(n^2+3n+2\) nguyên tố cùng nhau
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
Chứng minh những phân số sau là tối giản
\(G=\dfrac{2n+3}{4n+1}\) \(H=\dfrac{3n+2}{7n+1}\)
\(I=\dfrac{n+7}{n+2}\)
c: nếu n=3 thì đây ko phải phân số tối giản nha bạn
b: Nếu n=3 thì đây cũng ko phải phân số tối giản nha bạn
a: Nếu n=1 thì đây cũng ko phải phân số tối giản nha bạn
2) chứng minh \(\dfrac{2n+5}{n+3}\)(n thuộc N) tối giản
A = \(\dfrac{2n+5}{n+3}\)
Gọi ƯCLN của 2n + 5 và n + 3 là d
Ta có \(\left\{{}\begin{matrix}2n+5⋮d\\n+3⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2n+5⋮d\\2.\left(n+3\right)⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2n+5⋮d\\2n+6⋮d\end{matrix}\right.\)
Trừ vế với vế ta có:
2n + 6 - ( 2n + 5) ⋮ d
⇒ 2n + 6 - 2n - 5 ⋮ d
⇒ 1 ⋮ d
Vậy ước chung lớn nhất của 2n + 5 và n + 3 là 1 hay phân số:
A = \(\dfrac{2n+5}{n+3}\) là phân số tối giản
Chứng minh phân thức \(\dfrac{3-n}{n-4}\) là tối giản:
Gọi d=ƯCLN(-n+3,n-4)
\(\Rightarrow-n+3⋮d;n-4⋮d\\ \Rightarrow-n+3+n-4⋮d\\ \Rightarrow-1⋮d\\ \Rightarrow d=1\\ \RightarrowƯCLN\left(-n+3,n-4\right)=1\)
Vậy ...
Chứng minh:
\(\dfrac{n^7+n^2+n}{n^8+n+1}\) chưa tối giản
n8 + n + 1 = n8 - n2 + n2 + n + 1
= n2 (n6 - 1 ) + n2 + n + 1
= n2 (n2 - 1)(n4 +n2 + 1) + n2 + n + 1
= n2 (n2 - 1)(n4 + 2n2 + 1 - n2) + n2 + n + 1
= n2 (n2 - 1)(n2 + n + 1)(n2 - n + 1) + n2 + n + 1 chia hết cho n2 + n +1
Mặt khác :
n7 + n2 + 1 = n7 - n + n2 + n + 1
= (n - 1)(n6 - 1) +n2 + n + 1
= (n - 1)(n2 - 1)(n2 + n + 1)(n2 - n + 1) + n2 + n + 1 chia hết cho n2 + n + 1
Vậy chúng đều có ước chung là n2 + n + 1 nên phân số đó ko tối giản