Tim GTNN, GTLN
\(D=\frac{x}{x^2+1}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tim GTNN va GTLN cua bieu thuc D=\(\frac{4x+3}{x^3+1}\)
GTLN và GTNN của biểu thức này đều ko tồn tại
D sẽ có giá trị lớn tới dương vô cùng khi \(x\) càng gần \(-1\) về bên trái (ví dụ, các giá trị như \(x=-1,00001\) chẳng hạn)
D có giá trị nhỏ tới âm vô cùng khi \(x\) càng gần \(-1\) về bên phải (ví duhj, các giá trị như \(x=-0,99999\))
tim GTLN, GTNN của\(\frac{2x+1}{x^2+2}\)
Tìm \(MAX\)
Ta có: \(\frac{2x+1}{x^2+2}=\frac{x^2+2-x^2+2x-1}{x^2+2}\)
\(=1-\frac{\left(x-1\right)^2}{x^2+2}\le1\)
Dấu "=" xảy ra khi \(\Leftrightarrow-\frac{\left(x-1\right)^2}{x^2+2}=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy GTLN của biểu thức là \(1\) tại \(x=1\)
Tìm \(MIN\)
Ta có: \(1-\frac{\left(x-1\right)^2}{x^2+2}=-\frac{1}{2}+\frac{3}{2}-\frac{\left(x-1\right)^2}{x^2+2}\)
\(=-\frac{1}{2}+\frac{3x^2+6-2x^2+4x-2}{2\left(x^2+2\right)}\)
\(=-\frac{1}{2}+\frac{x^2+4x+4}{2\left(x^2+2\right)}=-\frac{1}{2}+\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}\ge-\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy GTNN của biểu thức là \(-\frac{1}{2}\) tại \(x=-2\)
tim gtnn va gtln cua
a)\(\frac{x^2+1}{x^2-x+1}\)
b)\(\frac{5y^2-3xy}{x^2-3xy+4y^2}\)
c)Cho \(x^2+2xy-x^2y-y+7=0\) .Tim gtnn va gtln cua \(x^2+6xy+12y^2\)
Tim GTLN ,GTNN cua bieu thuc :A=\(\frac{x+1}{x^2+x+1}\)
GTLN của A là 2/3
GTNN của A là số ko tìm đc hay nói là lớn hơn -1
\(x^2\)luôn cho ra kết là lớn hơn 0. Mà \(x+1< x^2\)Cứ thế cho ra số lớn hơn -1. Đơn giản vì \(x+1< x^2+x+1\)
+) GTNN
Ta có :\(3A=\frac{3x+3}{x^2+x+1}=\frac{-x^2-x-1+x^2+4x+4}{x^2+x+1}=\frac{-\left(x^2+x+1\right)+\left(x+2\right)^2}{x^2+x+1}\)
\(=-1+\frac{\left(x+1\right)^2}{x^2+x+1}\ge-1\) \(\Rightarrow A\ge-\frac{1}{3}\)Đạt GTNN là \(-\frac{1}{3}\)
Đạt được khi \(\frac{\left(x+1\right)^2}{x^2+x+1}=0\Rightarrow x=-1\)
+) GTLN :
\(A=\frac{x+1}{x^2+x+1}=\frac{x^2+x+1-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\le1\)Đạt GTLN là 1
Đạt được khi \(\frac{x^2}{x^2+x+1}=0\Rightarrow x=0\)
1. Tim GTNN: \(B=\frac{3x^2-2x+3}{x^2+1}\)
2. Tim GTLN:
\(C=\frac{100}{25x^2-20x+14}\)
\(D=\frac{1000}{x^2+y^2-20.\left(x+y\right)+2210}\)
tim gtnn gtln của A=\(\frac{1}{\sqrt{X}-1}\)VÀ B=\(\frac{\sqrt{X}}{X-\sqrt{X}+1}\)
tim GTLN hoac GTNN cua
a.\(\frac{x^2-1}{x^2+1}\)
b\(\frac{2x+1}{x^2}\)
bạn cứ xét mẫu là được
mẫu của chúng luôn luôn > hoặc = 0
chỉ cần xét tử thôi nha bạn
a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)
b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)
\(\frac{x^2}{x^2-5x+7}\) tim gtnn va gtln
\(S=\sqrt{x-1}+\sqrt{2x^2-5x+7}\)
\(\Rightarrow S^2=2x^2-4x+6+2\sqrt{x-1.2x^2-5x+7}\)
\(=2.x-1^2+4+2\sqrt{x-1.2x^2+5x-7}\ge4\)
\(Min_A=4\Leftrightarrow x=1\)
Vậy: \(x=1\)
P/s: Đúng ko nhỉ?
bạn ơ\(\sqrt{x-1}+\sqrt{2x^2-5x+7}\)i sao ra cai do vay
a,Tim GTNN cua bieu thuc \(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\)
b,Tim GTLN cua bieu thuc \(D=\frac{4}{\left(2x-3\right)^2+5}\)
\(\text{a)Để C đạt GTNN}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)
\(\Rightarrow C\ge-10\)
\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)
b)\(\text{Để D đạt GTLN}\)
=>(2x-3)2+5 đạt GTNN
Mà (2x-3)2\(\ge\)5
\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)