GP

Những câu hỏi liên quan
H24
Xem chi tiết
TL
12 tháng 5 2021 lúc 22:00

a) Giả sử `(x+1)^2 >= 4x` là đúng.

Có: `(x+1)^2 >=4x <=> x^2+2x+1>=4x`

`<=>x^2+1>=2x`

`<=>x^2-2x+1>=0`

`<=> (x-1)^2>=0 forall x`.

Vậy điều giả sử là đúng.

b) `x^2+y^2+2 >=2(x+y)`

`<=> (x^2-2x+1)+(y^2-2y+1) >=0`

`<=>(x-1)^2+(y-1)^2>=0 forall x,y`

c) `(1/x+1/y)(x+y)>=4`

`<=> (x+y)/(xy) (x+y) >=4`

`<=> (x+y)^2 >= 4xy`

`<=> x^2+2xy+y^2>=4xy`

`<=> (x-y)^2>=0 forall x,y > 0`

d) `x/y+y/x>=2`

`<=> (x^2+y^2)/(xy) >=2`

`<=> x^2+y^2 >=2xy`

`<=> (x-y)^2>=0 \forall x,y>0`.

Bình luận (1)
DT
12 tháng 5 2021 lúc 22:24

a) Xét hiệu \(\left(x+1\right)^2-4x\) = \(x^2-2x+1=\left(x-1\right)^2\ge0\)

=> \(\left(x+1\right)^2-\text{4x}\) \(\ge\) 0

=> \(\left(x+1\right)^2\ge\text{4x}\) (điều phải chứng minh)

b) xét hiệu \(x^2+y^2+2-2\left(x+y\right)\) = \(\left(x-1\right)^2+\left(y-1\right)^2\ge0\)

=> \(x^2+y^2+2-2\left(x+y\right)\ge0\)

=> \(x^2+y^2+2\ge2\left(x+y\right)\) (điều phải chứng minh)

c) Xét hiệu \(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)-4\) = \((\dfrac{x+y}{xy})\left(x+y\right)-4=\dfrac{\left(x+y\right)^2-4xy}{xy}=\dfrac{\left(x-y\right)^2}{xy}\) \(\ge0\)​​​(vì x>0,y>0)

=>\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)\ge4\) (điều phải chứng minh)

d) Áp dụng bất đẳng thức Cau-Chy cho các số x>0;y>0 ta có

\(\dfrac{x}{y}+\dfrac{y}{x}\ge2.\left(\dfrac{xy}{yx}\right)=2\)

=> \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\) (điều phải chứng minh)

Mình làm hơi tắt mong bạn thông cảm nhé

Chúc bạn học tốt

 

Bình luận (1)
DC
Xem chi tiết
TL
30 tháng 10 2016 lúc 20:08

hỏi j z pn

Bình luận (0)
DC
30 tháng 10 2016 lúc 20:46

giải hệ phương trình 

x^2-2*x*y+x+y=0

x^4-4*x^2*y+3*x^2+y^2=0

Bình luận (0)
BG
Xem chi tiết
QT
Xem chi tiết
NL
18 tháng 3 2021 lúc 17:55

a.

Pt giao điểm: \(cosx=0\Rightarrow x=\dfrac{\pi}{2}\)

\(S=\int\limits^{\pi}_0\left|cosx\right|dx=\int\limits^{\dfrac{\pi}{2}}_0cosxdx-\int\limits^{\pi}_{\dfrac{\pi}{2}}cosxdx=2\)

b.

Bạn coi lại đề, \(y=\dfrac{1}{2}x,x+\dfrac{1}{2}\) nghĩa là sao nhỉ?

c.

Pt giao điểm với Ox:

\(2-x-x^2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

\(S=\int\limits^1_{-2}\left(2-x-x^2\right)dx=\left(2x-\dfrac{1}{2}x^2-\dfrac{1}{3}x^3\right)|^1_{-2}=\dfrac{9}{2}\)

Bình luận (1)
MC
Xem chi tiết
NA
28 tháng 4 2022 lúc 10:13

Do đường tròn tiếp xúc với trục Ox nên R = d(I,Ox) = |yI|.

Phương trình trục Ox là y = 0

Đáp án D đúng vì: Tâm I(−3;\(\dfrac{-5}{2}\)) và bán kính R=\(\dfrac{5}{2}\). Ta có   

d(I, Ox) = |yI| = R.

 

Bình luận (0)
DK
Xem chi tiết
TM
12 tháng 9 2017 lúc 0:44

\(x^2\left(y^2+z^2-x^2\right)+y^2\left(z^2+x^2-y^2\right)+z^2\left(x^2+y^{ 2}-z^2\right)\)

\(=x^2\left[\left(y+z\right)^2-x^2-2yz\right]+y^2\left[\left(z+x\right)^2-y^2-2zx\right]+z^2\left[\left(x+y\right)^2-z^2-2xy\right]\)

\(=x^2\left[\left(y+z-x\right)\left(y+z+x\right)-2xy\right]+y^2\left[\left(z+x-y\right)\left(z+x+y\right)-2zx\right]\)

\(+z^2\left[\left(x+y-z\right)\left(x+y+z\right)-2xy\right]\)

\(=x^2\left[\left(y+z-x\right).0-2yz\right]+y^2\left[\left(z+x-y\right).0-2zx\right]+z^2\left[\left(x+y-z\right).0-2xy\right]\)

\(=x^2\left(-2yz\right)+y^2\left(-2zx\right)+z^2\left(-2xy\right)\)\(=-2x^2yz-2xy^2z-2xyz^2\)

\(=-2xyz\left(x+y+z\right)=-2xyz.0=0\)

Bình luận (0)
ND
Xem chi tiết
LL
Xem chi tiết
LN
Xem chi tiết
KN
30 tháng 7 2019 lúc 19:31

\(\left(y-2\right)\left(y-3\right)+\left(y-2\right)-1=0\)

\(\Leftrightarrow\left(y-2\right)\left(y-3\right)+\left(y-3\right)=0\)

\(\Leftrightarrow\left(y-3\right)^2=0\)

\(\Leftrightarrow y=3\)

\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)

\(\Leftrightarrow\left(x+3\right)x\left(x-2\right)=0\)

\(\Leftrightarrow x\in\left\{0;-3;2\right\}\)

Bình luận (0)
H24
30 tháng 7 2019 lúc 19:31

Bài làm

Vì ( y - 2 ) . ( y - 3 ) + ( y - 2 ) - 1 = 0

=> ( y - 2 ) = 0 hoặc ( y - 3 ) + ( y - 2 ) - 1 = 0

=> y = 2 hoặc y = 3 

Vậy y = 2 hoặc y = 3

~ Mấy câu còn lại làm tương tự. Làm theo mẫu câu a . b = 0 , => a = 0 hoặc b = 0. ~
# Chúc bạn học tốt # 

Bình luận (0)
KN
30 tháng 7 2019 lúc 19:36

\(2\left(x+3\right)-x^2-3x=0\)

\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow\left(2-x\right)\left(x+3\right)=0\)

\(\Leftrightarrow x\in\left\{2;-3\right\}\)

\(\left(x-7\right)\left(x+3\right)=\left(x+3\right)\left(2x-9\right)\)

\(\Leftrightarrow\left(x-7\right)\left(x+3\right)-\left(x+3\right)\left(2x-9\right)=0\)

\(\Leftrightarrow\left(x-7-2x+9\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(2-x\right)\left(x+3\right)=0\)

\(\Leftrightarrow x\in\left\{2;-3\right\}\)

Bình luận (0)
NH
Xem chi tiết