a) So sánh:
22013 và 31344
b) Tính:
A=1/4.9+1/9.14+1/14.19+......+1/64.69
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính A= 1/4.9 +1/9.14 +1/14.19 +... +1/64.69
tich minh cho minh len thu 8 tren bang sep hang cai
a) So sánh 22015 và 31029
b) Tính A = \(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{64.69}\)
a 2^2015>3^1029
b 5A=\(\frac{5}{4.9}\)+\(\frac{5}{9.14}\)+\(\frac{5}{14.19}\)+.....+\(\frac{5}{64.69}\)
5A=1/4-1/9+1/9-1/14+1/14-1/19+1/19+....+1/64-1/69
5A=1/4-1/9
A=(1/4-1/9)/5
A=1/36
Tính A=1/4.9+1/9.14+1/14.19+...+1/64.69
\(A=\dfrac{1}{5}\left(\dfrac{5}{4\cdot9}+\dfrac{5}{9\cdot14}+...+\dfrac{5}{64\cdot69}\right)\)
\(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+...+\dfrac{1}{64}-\dfrac{1}{69}\right)\)
\(=\dfrac{1}{5}\cdot\dfrac{65}{276}=\dfrac{13}{276}\)
B = \(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{64.69}\)
thực hiện phép tính
5B=\(\frac{5}{4\cdot9}+\frac{5}{9\cdot14}+...+\frac{5}{64\cdot69}\)
5B=\(\frac{9-4}{4\cdot9}+\frac{14-9}{9\cdot14}+...+\frac{69-64}{64.69}\)
5B=\(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{64}-\frac{1}{69}\)
5B=\(\frac{65}{276}\)
B=\(\frac{13}{276}\)
\(B=\frac{1}{4.9}+\frac{1}{9.14}+....+\frac{1}{64.69}\)
\(\Rightarrow5B=\frac{5}{4.9}+\frac{5}{9.14}+...+\frac{5}{64.69}\)
\(5B=\frac{9-4}{4.9}+\frac{14-9}{9.14}+....+\frac{69-64}{64.69}\)
\(5B=\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{64}-\frac{1}{69}\)
\(5B=\frac{1}{4}-\frac{1}{69}\)
\(5B=\frac{65}{276}\)
\(B=\frac{65}{276}:5\)
\(B=\frac{13}{276}\)
\(B=\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{64.69}\)
\(5B=\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{64.69}\)
\(5B=\frac{1}{4}-\frac{1}{9}+\frac{1}{9}+...+\frac{1}{64}-\frac{1}{69}\)
\(5B=\frac{1}{4}-\frac{1}{69}\)
\(5B=\frac{65}{276}\)
\(B=\frac{65}{276}:5\)
\(B=\frac{13}{276}\)
\(C=70.\left(\dfrac{131313}{565656}+\dfrac{131313}{727272}+\dfrac{131313}{9909090}\right)\)
\(B=\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+......+\dfrac{1}{ }64.69\)
\(A=\dfrac{2}{1.4}+\dfrac{2}{4.7}+\dfrac{2}{7.10}+....+\dfrac{2}{97.100}\)
b: Ta có: \(B=\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+...+\dfrac{1}{64\cdot69}\)
\(=\dfrac{1}{5}\left(\dfrac{5}{4\cdot9}+\dfrac{5}{9\cdot14}+...+\dfrac{5}{64\cdot69}\right)\)
\(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+...+\dfrac{1}{64}-\dfrac{1}{69}\right)\)
\(=\dfrac{1}{5}\cdot\dfrac{65}{4\cdot69}\)
\(=\dfrac{13}{276}\)
\(A=\dfrac{2}{1\cdot4}+\dfrac{2}{4\cdot7}+...+\dfrac{2}{97\cdot100}\\ A=\dfrac{2}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{97\cdot100}\right)\\ A=\dfrac{2}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\\ A=\dfrac{2}{3}\left(1-\dfrac{1}{100}\right)=\dfrac{2}{3}\cdot\dfrac{99}{100}=\dfrac{33}{50}\\ B=\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+...+\dfrac{1}{64\cdot69}\\ B=\dfrac{1}{5}\left(\dfrac{5}{4\cdot9}+\dfrac{5}{9\cdot14}+...+\dfrac{5}{64\cdot69}\right)\\ B=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+...+\dfrac{1}{64}-\dfrac{1}{69}\right)\\ B=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{69}\right)=\dfrac{1}{5}\cdot\dfrac{65}{276}=\dfrac{13}{276}\)
\(C=70\left(\dfrac{13}{56}+\dfrac{13}{72}+\dfrac{13}{90}\right)=70\cdot13\left(\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\\ C=910\left(\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\\ C=910\left(\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ C=910\left(\dfrac{1}{7}-\dfrac{1}{10}\right)=910\cdot\dfrac{3}{70}=39\)
Cau 1:Tinh A=1/4.9 + 1/9.14 + 1/14.19 + ... + 1/64.69
Cau 2:a.Tim STN nho nhat,biet rang so do khi chia cho 3,cho4,cho 5,cho 6 deu du la 2,con chia cho 7 thi du 3.
b.Tim 2 STN biet tong UCLN va BCNN cua chung = 23
c.Tim STN x;y biet 32x1y chia het cho 45
A=1/(4.9)+1/(9.14)+1/(14.19)+...+1/(64.69)
=1/5.[5/(4.9)+5/(9.14)+5/(14.19)+...+5/(64.69)]
=1/5.(1/4-1/9+1/9-1/14+1/14-1/19+...+1/64-1/69)
=1/5.(1/4-1/69)=1/5.65/276=13/276
thực hiện phép tính :(1/4.9+1/9.14+1/14.19+...+1/44.49)
\(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{44.49}\)
\(=\frac{1}{5}\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{44.49}\right)\)
\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{44}-\frac{1}{49}\right)\)
\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right)=\frac{9}{196}\)
G=(1/4.9+1/9.14+1/14.19+...+1/49.54):1-3-5-...-49-51/108
G=(1/4.9+1/9.14+1/14.19+...+1/49.54):1-3-5-...-49-51/108