a, Ta có : 22013 = (23)671 = 8671
31344 = (32)672 = 9672
Mà 8671 < 9672
Vậy 22013 < 31344
b, \(A=\frac{1}{4\cdot9}+\frac{1}{9\cdot14}+\frac{1}{14\cdot19}+...+\frac{1}{64\cdot69}\)
\(A\cdot5=\frac{5}{4\cdot9}+\frac{5}{9\cdot14}+...+\frac{5}{64\cdot69}\)
\(A\cdot5=\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{64}-\frac{1}{69}\)
\(A\cdot5=\frac{1}{4}-\frac{1}{69}=\frac{65}{276}\)
\(A=\frac{65}{276}\div5=\frac{13}{276}\)
a, Ta có: 22013 = (23)671 = 8671
31344 = (32)672 = 9672
Vì 8671 < 9672 => 22013 < 31344
b, A = \(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{64.69}\)
5A = \(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{64.69}\)
5A = \(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{64}-\frac{1}{69}\)
5A = \(\frac{1}{4}-\frac{1}{69}=\frac{65}{276}\)
A = \(\frac{65}{276}:5=\frac{13}{276}\)