Những câu hỏi liên quan
PB
Xem chi tiết
CT
25 tháng 12 2017 lúc 10:53

Chọn đáp án C

Phương pháp

+) Đặt điều kiện để phương trình có nghĩa.

+) Đặt ẩn phụ để giải phương trình: log 2 x = t . Tìm điều kiện để phương trình có nghiệm.

+) Dựa vào dữ kiện  x 1 + x 2 = 6  tìm m. Từ đó tính  x 1 - x 2 .

Phương trình đã cho có hai nghiệm phân biệt: x 1 , x 2 ⇔ phương trình (*) có hai nghiệm phân biệt ⇔ m ≠ 2 .

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 12 2017 lúc 14:56

Giả sử  x 1 x 2  la hai nghiệm của phương trình  x 2 + px + q = 0

Theo hệ thức Vi-ét ta có:  x 1 +  x 2  = - p/1 = - p;  x 1 x 2  = q/1 = q

Phương trình có hai nghiệm là  x 1  +  x 2  và  x 1 x 2  tức là phương trình có hai nghiệm là –p và q.

Hai số -p và q là nghiệm của phương trình.

(x + p)(x - q) = 0 ⇔  x 2  - qx + px - pq = 0 ⇔  x 2  + (p - q)x - pq = 0

Phương trình cần tìm:  x 2  + (p - q)x - pq = 0

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 2 2019 lúc 11:42

Bình luận (0)
LN
Xem chi tiết
PB
Xem chi tiết
CT
21 tháng 10 2019 lúc 9:14

Phương trình  2 x 2 - 4 m x - 1 = 0  có  ∆ ' = 4 m 2 + 2 > 0  nên phương trình có hai nghiệm phân biệt  x 1 ,   x 2  với S = x 1 + x 2 = 2 m ,  P = x 1 x 2 = - 1 2

Ta có:  T 2 = x 1 - x 2 2 = S 2 - 4 P = 4 m 2 + 2 ≥ 2 ⇒ T ≥ 2

Dấu bằng xảy ra khi m = 0.

Vậy  m i n T = 2

Đáp án cần chọn là: B

Bình luận (0)
BC
Xem chi tiết
AH
8 tháng 3 2023 lúc 19:43

Lời giải:

Có: $\Delta'=m^2-(-3m^2+4m-2)=4m^2-4m+2=(2m-1)^2+1\geq 1>0$ với mọi $m\in\mathbb{R}$

Do đó pt luôn có 2 nghiệm phân biệt với mọi $m$.

Khi đó, áp dụng định lý Viet với $x_1,x_2$ là 2 nghiệm của pt thì:

$x_1+x_2=2m$

$x_1x_2=-3m^2+4m-2$
Khi đó:
$A=|x_1-x_2|=\sqrt{(x_1-x_2)^2}=\sqrt{(x_1+x_2)^2-4x_1x_2}$

$=\sqrt{(2m)^2-4(-3m^2+4m-2)}=2\sqrt{(2m-1)^2+1}\geq 2\sqrt{1}=2$

Vậy $A_{\min}=2$. Giá trị này đạt tại $2m-1=0\Leftrightarrow m=\frac{1}{2}$

Bình luận (0)
HN
Xem chi tiết
HV
Xem chi tiết
NT
3 tháng 4 2023 lúc 23:37

Δ=(2m-2)^2-4(2m-5)

=4m^2-8m+4-8m+20

=4m^2-16m+24

=4m^2-16m+16+8=(2m-4)^2+8>=8>0 với mọi m

=>Phương trình luôn có hai nghiệm phân biệt

\(B=\dfrac{x_1^2}{x^2_2}+\dfrac{x_2^2}{x_1^2}\)

\(=\dfrac{x_1^4+x_2^4}{\left(x_1\cdot x_2\right)^2}=\dfrac{\left(x_1^2+x_2^2\right)^2-2\left(x_1\cdot x_2\right)^2}{\left(x_1\cdot x_2\right)^2}\)

\(=\dfrac{\left[\left(2m-2\right)^2-2\left(2m-5\right)\right]^2-2\left(2m-5\right)^2}{\left(2m-5\right)^2}\)

\(=\dfrac{\left(4m^2-8m+4-4m+10\right)^2}{\left(2m-5\right)^2}-2\)

\(=\left(\dfrac{4m^2-12m+14}{2m-5}\right)^2-2\)

\(=\left(\dfrac{4m^2-10m-2m+5+9}{2m-5}\right)^2-2\)

\(=\left(2m-1+\dfrac{9}{2m-5}\right)^2-2\)

Để B nguyên thì \(2m-5\in\left\{1;-1;3;-3;9;-9\right\}\)

=>\(m\in\left\{3;2;4;1;7\right\}\)

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 9 2019 lúc 14:28

Đáp án: A

Theo hệ thức Vi-ét ta có:

Ta xét các phương án:

 

Bình luận (0)
HN
Xem chi tiết
H24
25 tháng 7 2018 lúc 16:13

Giup minh vs: https://olm.vn/hoi-dap/question/1269512.html

Bình luận (0)