Những câu hỏi liên quan
NA
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
PT
Xem chi tiết
NT
1 tháng 3 2022 lúc 15:28

\(VT=\dfrac{1}{5}\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{\left(5n+1\right)\left(5n+6\right)}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)

\(=\dfrac{1}{5}\cdot\dfrac{5n+6-1}{5n+6}\)

\(=\dfrac{n+1}{5n+6}=VP\)

Bình luận (0)
TH
1 tháng 3 2022 lúc 15:35

undefined

Bình luận (0)
PM
Xem chi tiết
NH
8 tháng 8 2023 lúc 15:40

 CM:  \(\dfrac{1}{1.6}\)\(\dfrac{1}{11.16}\)+...+ \(\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}\) = \(\dfrac{n+1}{5n+6}\)

A = \(\dfrac{1}{5}\)(\(\dfrac{5}{1.6}\) + \(\dfrac{5}{6.11}\)+...+ \(\dfrac{5}{\left(5n+1\right).\left(5n+6\right)}\)

A = \(\dfrac{1}{5}\).( \(\dfrac{1}{1}\) - \(\dfrac{1}{6}\)\(\dfrac{1}{6}\) - \(\dfrac{1}{11}\)+...+ \(\dfrac{1}{5n+1}\) - \(\dfrac{1}{5n+6}\))

A = \(\dfrac{1}{5}\) .( \(\dfrac{1}{1}\) - \(\dfrac{1}{5n+6}\))

A = \(\dfrac{1}{5}\)\(\dfrac{5n+6-1}{5n+6}\)

A = \(\dfrac{1}{5}\)\(\dfrac{5n+5}{5n+6}\)

A = \(\dfrac{1}{5}\) . \(\dfrac{5.\left(n+1\right)}{5n+6}\)

A = \(\dfrac{n+1}{5n+6}\)

\(\dfrac{1}{1.6}\) + \(\dfrac{1}{6.11}\)\(\dfrac{1}{11.16}\)+...+ \(\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}\) = \(\dfrac{n+1}{5n+1}\) (đpcm)

 

 

Bình luận (0)
NT
8 tháng 8 2023 lúc 15:41

\(A=\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}\)

\(A=\dfrac{1}{5}\left[1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right]\)

\(A=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)

\(A=\dfrac{1}{5}\left(\dfrac{5n+6-1}{5n+6}\right)=\dfrac{1}{5}\left(\dfrac{5n+5}{5n+6}\right)=\dfrac{1}{5}.5\left(\dfrac{n+1}{5n+6}\right)=\dfrac{n+1}{5n+6}\)

\(\Rightarrow dpcm\)

Bình luận (0)
DV
Xem chi tiết
CM
19 tháng 1 2016 lúc 19:29

câu hỏi tương tự có đó bạn, bạn vào tham khảo nhe!

Bình luận (0)
H24
Xem chi tiết
TS
12 tháng 3 2015 lúc 21:15

mình trả lời bài 1 thôi nhé :

Gọi biểu thức trên là A.

Theo bài ra ta có:A=1/1.6+1/6.11+1/11.16+...+1/(5n+1)+1/(5n+6)

                           =1/5(1-1/6+1/6-1/11+1/11-1/16+...+1/5n+1-1/5n+6)

                           =1/5(1-1/5n+6)

                           =1/5( 5n+6/5n+6-1/5n+6)

                           =1/5(5n+6-1/5n+6)

                           =1/5.5n+5/5n+6

                           =n+1/5n+6

                           =ĐIỀU PHẢI CHỨNG MINH

 

Bình luận (0)
KT
30 tháng 4 2015 lúc 20:56

x- 20/11.13 - 20/13.15 - 20/13.15 - 20/15.17 -...- 20/53.55=3/11

x-10.(2/11.13+2/13.15+2/15.17+...+2/53.55=3/11

x-10.(1/11-1/13+1/13-1/15+1/15-1/17+...+1/53-1/55)=3/11

x-10.(1/11-1/55)=3/11

x-10.4/55=3/11

x-8/11=3/11

x = 3/11+8/11

x=11/11=1

****

Bình luận (0)
PH
5 tháng 3 2016 lúc 19:08

ban Optimus Prime sai dau bai rui

Bình luận (0)
DM
Xem chi tiết
PU
Xem chi tiết
LF
1 tháng 4 2017 lúc 16:54

\(\dfrac{1}{1\cdot6}+\dfrac{1}{6\cdot11}+\dfrac{1}{11\cdot16}+...+\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}=\dfrac{n+1}{5n+6}\)

\(VT=\dfrac{1}{5}\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{\left(5n+1\right)\left(5n+6\right)}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)\(=\dfrac{1}{5}\cdot\left(\dfrac{5n+6}{5n+6}-\dfrac{1}{5n+6}\right)\)

\(=\dfrac{1}{5}\cdot\dfrac{5\left(n+1\right)}{5n+6}=\dfrac{n+1}{5n+6}=VP\)

Bình luận (4)
MN
7 tháng 5 2017 lúc 21:17

Ta có: \(\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{\left(5n+1\right).\left(5n+6\right)}\)

=\(\dfrac{1}{5}.\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right)\)

=\(\dfrac{1}{5}.\left(1-\dfrac{1}{5n+6}\right)\)

= \(\dfrac{1}{5}.\left(\dfrac{5n+6}{5n+6}-\dfrac{1}{5n+6}\right)\)

=\(\dfrac{1}{5}.\dfrac{5n+5}{5n+6}\)

=\(\dfrac{1}{5}.\dfrac{5.\left(n+1\right)}{5n+6}\)

=\(\dfrac{n+1}{5n+6}\left(ĐPCM\right)\)

Bình luận (0)