Ôn tập toán 6

PU

Chứng minh rằng với mọi n \(\in\) N ta luôn có:

\(\dfrac{1}{1.6}\)+\(\dfrac{1}{6.11}\)+\(\dfrac{1}{11.16}\)+...+\(\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}\)= \(\dfrac{n+1}{5n+6}\)

LF
1 tháng 4 2017 lúc 16:54

\(\dfrac{1}{1\cdot6}+\dfrac{1}{6\cdot11}+\dfrac{1}{11\cdot16}+...+\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}=\dfrac{n+1}{5n+6}\)

\(VT=\dfrac{1}{5}\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{\left(5n+1\right)\left(5n+6\right)}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)\(=\dfrac{1}{5}\cdot\left(\dfrac{5n+6}{5n+6}-\dfrac{1}{5n+6}\right)\)

\(=\dfrac{1}{5}\cdot\dfrac{5\left(n+1\right)}{5n+6}=\dfrac{n+1}{5n+6}=VP\)

Bình luận (4)
MN
7 tháng 5 2017 lúc 21:17

Ta có: \(\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{\left(5n+1\right).\left(5n+6\right)}\)

=\(\dfrac{1}{5}.\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right)\)

=\(\dfrac{1}{5}.\left(1-\dfrac{1}{5n+6}\right)\)

= \(\dfrac{1}{5}.\left(\dfrac{5n+6}{5n+6}-\dfrac{1}{5n+6}\right)\)

=\(\dfrac{1}{5}.\dfrac{5n+5}{5n+6}\)

=\(\dfrac{1}{5}.\dfrac{5.\left(n+1\right)}{5n+6}\)

=\(\dfrac{n+1}{5n+6}\left(ĐPCM\right)\)

Bình luận (0)

Các câu hỏi tương tự
LC
Xem chi tiết
NT
Xem chi tiết
GL
Xem chi tiết
NN
Xem chi tiết
TR
Xem chi tiết
H24
Xem chi tiết
CT
Xem chi tiết
CA
Xem chi tiết