tìm các nghiệm nguyên của phương trình: x2 +y2-x-y=8
Tìm các nghiệm nguyên của phương trình sau: 7(x2+y2) = 25(x+y)
Tìm nghiệm nguyên của phương trình : x2 - xy +y2 = x-y
<=>x^2+y^2-x-y-xy=0
<=>2x^2+2y^2-2x-2y-2xy=0
<=>(x-y)^2+(x-1)^2+(y-1)^2=2
mà 2=0+1+1=1+0+1=1+1+0
(phần này tách số 2 ra thành tổng 3 số chính phương)
Xét trường hợp 1:
(x-y)^2=0
(x-1)^2=1
(y-1)^2=1
Giải ra ta được x=2, y=2
Tương tự xét các trường hợp còn lại.
Kết quả: 5 nghiệm: (2;2) ; (1;0) ; (1;2) ; (0;1) ; (2;1)
x2 - xy + y2 = x - y
<=> x2 - xy + y2 - x + y = 0
<=> x ( x - y) + y2 - ( x - y) = 0
<=> (x-1)(x-y)y2 =0
giải phương trình nghiệm nguyên: x+y+xy=x2+y2
\(x+y+xy=x^2+y^2\)
⇔ \(2xy+2x+2y=2x^2+2y^2\)
⇔ \(\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=2\)
⇔ \(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)
⇔
⇔
Các cặp số nguyên (x, y) thỏa mãn phương trình là : (0; 0); (2; 2); (0; 1); (2; 1); (1; 0);(1;2).
Tìm nghiệm nguyên của phương trình: x4+x2+1=y2
Ta có x4 + x2 + 1 = y2
Lại có x4 + 2x2 + 1 ≥ x4 + x2 + 1 hay (x2 + 1)2 ≥ x4 + x2 + 1
=> (x2 + 1)2 ≥ y2 (1)
Lại có x4 + x2 + 1 > x4 => y2 > x4 (2)
Từ (1) và (2), ta có x4 < y2 ≤ (x2 + 1)2
<=> y2 = (x2 + 1)2 = x4 + 2x2 + 1
Mà x4 + x2 + 1 = y2 => x4 + 2x2 + 1 = x4 + x2 + 1
<=> x2 = 0 <=> x = 0
Thay vào, ta có 1 = y2 <=> y ∈ {-1,1}
Vậy ...
Giải phương trình nghiệm nguyên 7(x+y)=3(x2−xy+y2)
Giúp mình với các bạn!
nhan 2 ve voi x+y roi suot hien hang dang thuc
tìm các cặp số nguyên (x,y) thỏa mãn phương trình sau : x2 - y2= 2017
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=2017=1.2017\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y=1\\x+y=2017\end{matrix}\right.\\\left\{{}\begin{matrix}x-y=-1\\x+y=-2017\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1009\\y=1008\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1009\\y=-1008\end{matrix}\right.\end{matrix}\right.\)
Tập nghiệm của pt: x4-8x ²-9=0
Hệ pt: x2+y2+xy=7
x2+y2-xy=3
có nghiệm là.
Cho phương trình(x2-3x+3)2-2x2+6x-5=0 Nếu đặt t=x2-3x+3
thì phương trình đã cho trở thành phương trình nào
Gọi là tập tất cả các giá trị nguyên của tham số thuộc đoạn −2;6 để phương trình x2+4mx +m2
có hai nghiệm dương phân biệt. Tổng các phần tử trong S bằng
A. -3.
B. 2.
C. 18.
D. 21.
Tìm giải phương trình nghiệm nguyên : x2 = y2
Tìm nghiệm nguyên của phương trình sau:
(x2 - x +1)(y2 + xy) = 3x - 1
bài này dễ quá 😖 mấy a/c giúp e với
Tìm nghiệm nguyên (x;y) của phương trình: 2x - y2 + 57 =0
Lời giải:
Hiển nhiên $x\geq 0$
Ta có: $2^x=y^2-57\equiv y^2\equiv 0,1\pmod 3$
$\Leftrightarrow (-1)^x\equiv 0,1\pmod 3$
$\Rightarrow x$ chẵn.
Đặt $x=2a$ với $a$ là số tự nhiên.
Khi đó: $2^{2a}-y^2=-57$
$\Leftrightarrow (2^a-y)(2^a+y)=-57$
Đến đây là dạng phương trình tích cực kỳ đơn giản nên bạn có thể tự xét TH để giải. Kết quả $a=3; y=11$ hay $x=6; y=7$
Lời giải:
Hiển nhiên $x\geq 0$
Ta có: $2^x=y^2-57\equiv y^2\equiv 0,1\pmod 3$
$\Leftrightarrow (-1)^x\equiv 0,1\pmod 3$
$\Rightarrow x$ chẵn.
Đặt $x=2a$ với $a$ là số tự nhiên.
Khi đó: $2^{2a}-y^2=-57$
$\Leftrightarrow (2^a-y)(2^a+y)=-57$
Đến đây là dạng phương trình tích cực kỳ đơn giản nên bạn có thể tự xét TH để giải. Kết quả $a=3; y=11$ hay $x=6; y=7$