Cho a+3>b+3 khi đó
A. a<b. B. a-3>b-3. C. a-3≤ b-3 D. a-3> b
Cho a+b+c+d=0
a) Chứng minh a^3+b^3+c^3+d^3=3(ab-cd)(c+d)
b)Chứng minh (a+b+c+)^3=a^3 + b^3 + c^3+3(a+b)(b+c)(c+a)
c)Cho c-a=b+d. Chứng Minh a^3+b^3-c^3+d^3=3(d-c)(ab+cd)
a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (đpcm)
1. Cho A=[–4;7] và B=(–\(\infty\);–2)∪ (3;+\(\infty\)). Khi đó A∩B là:
A) [–4;–2)∪ (3;7]
B) [–4;–2)∪ (3;7).
C) (–\(\infty\);2]∪ (3;+\(\infty\))
D)(–\(\infty\);–2)∪ [3;+\(\infty\)).
2. Cho A=(–\(\infty\);–2]; B=[3;+\(\infty\)) và C=(0;4). Khi đó tập (A∪B)∩ C là:
A) [3;4].
B) (–\(\infty\);–2]∪ (3;+\(\infty\)).
C) [3;4).
D)(–\(\infty\);–2)∪ [3;+\(\infty\)).
3. Cho A = (−∞; 5), B = (−∞; a) với a là số thực. Tìm a để A con B
A. a = 5.
B. a ≤ 5.
C. a ≥ 5.
D. B\A = B
Câu 1: A
Câu 2: C
Câu 3: C
1. Cho A = (1; +∞); B = [−2; 6] . Tập hợp A ∩ B là
A. [−2; +∞)
B. (1; +∞)
C. [−2; 6]
D. (1; 6]
2. Cho A=[–4;7] và B=(-\(\infty\);–2)∪ (3;+\(\infty\)). Khi đó A∩B là:
A.[– 4; – 2) ∪ (3; 7]
B.[– 4; – 2) ∪ (3; 7)
C.(– ∞; 2] ∪ (3; +∞)
D.(−∞; −2) ∪ [3; +∞)
3. Cho ba tập hợp A = (-∞; 3), B = [−1; 8], C = (1 ; +∞). Tập (A ∩ B)\ (A ∩ C) là tập
A. [−1; 1]
B. (1 ; 3)
C. (−1; 3)
D. (−1; 1)
Cho a+b+d+3 khác 0; b+3 khác 0; d+a khác 0 và a+b/b+3=3+d/d+a. Khi đó a=...
Theo t/c dãy tỉ số=nhau:
\(\frac{a+b}{b+3}=\frac{3+d}{d+a}=\frac{a+b+3+d}{b+3+d+a}=1\)
=>a+b=b+3
=>a=3(cùng bớt đi b)
Vậy a=3
theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{b+3}=\frac{3+d}{d+a}=\frac{a+b+3+d}{b+3+d+a}\)(hai vế trên đều giống nhau)
=>\(\frac{a+b+3+d}{b+3+d+a}=1\)
<=>a+b=b+3
=>a=3 (vì b=b cùng bớt b)
tại sao \(\frac{a+b}{b+3}\)=\(\frac{3+d}{d+a}\)=\(\frac{a+b+3+d}{b+3+d+a}\)
cho tam giác ABC. Trên AB, Bc lần lượt có các điểm D và E sao cho AB=3xAD, BC=4xBE. Nối A với E; C với D; AE cắt CD tại M. Khi đó tỉ số MA/ME là: a.2 b.2/3 c.3 d.7/3
Cho a + b + d + 3 khác 0 ; b + 3 khác 0 ; d + a khác 0 và a+b/b+3 = 3+d/d+a
Khi đó a =
Theo t/c dãy tỉ số=nhau:
\(\frac{a+b}{b+3}=\frac{3+d}{d+a}=\frac{a+b+3+d}{b+3+d+a}=1\)
=>a+b=b+3
=>a=3(cùng bớt đi b)
Vậy a=3 thỏa mãn
Cho biểu thức S=a^2+b^2+c^2+d^2+ac+bd trong đó ab-bc=1
a) CMR S >= căn(3)
b) Tính GT tổng (a+b)^2 + (b+d)^2 khi biết S= căn (3)
Cho a/b=c/d
CMR:
a. (a-b/c-a)^2 =ab/cd
b. (a+b/c+a)^3 = a^3 -b^3/c^3 -d^3
\(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
\(\Rightarrow\frac{a-b}{c-d}=\frac{bk-b}{dk-d}=\frac{b\left(k-1\right)}{d\left(k-1\right)}=\frac{b}{d}\Rightarrow\left(\frac{a-b}{c-d}\right)^2=\frac{b^2}{d^2}\)
=> Sai đề.
cho a/b = c/d ; c khác o
CMR(a-b/c-d)^2 =ab/cd
(a+b/c+d)^3=(a^3-b^3)/(c^3-d^3)
Ta co: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
=> \(\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}\)
=>. \(\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)
Ta co: \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\frac{\left(a+c\right)^3}{\left(b+d\right)^3}=\frac{a^3}{b^3}=\frac{c^3}{d^3}=\frac{a^3-c^3}{b^3-d^3}\)