Những câu hỏi liên quan
LH
Xem chi tiết
RS
Xem chi tiết
HH
26 tháng 5 2018 lúc 21:44

a/ \(\Delta ADE\)vuông và \(\Delta ADF\)vuông có:

\(\widehat{EAD}=\widehat{DAF}\)(AD là đường phân giác của \(\Delta ABC\))

Cạnh huyền AD chung

=> \(\Delta ADE\)vuông = \(\Delta ADF\)vuông (cạnh huyền - góc nhọn)

=> DE = DF (hai cạnh tương ứng) (đpcm)

b/ \(\Delta ABD\)và \(\Delta ACD\)có:

AB = AC (\(\Delta ABC\)cân tại A)

\(\widehat{EAD}=\widehat{DAF}\)(AD là đường phân giác của \(\Delta ABC\))

Cạnh AD chung

=> \(\Delta ABD\)\(\Delta ACD\)(c. g. c)

Ta có AB = AC (\(\Delta ABC\)cân tại A)

=> A thuộc đường trung trực của BC

=> AD \(\perp\)BC (đpcm)

c/ Ta có AD là đường phân giác của \(\Delta ABC\)

=> \(\widehat{DAB}=\frac{\widehat{BAC}}{2}=\frac{80^o}{2}=40^o\)(tính chất tia phân giác)

và \(\widehat{EDA}=90^o-\widehat{DAB}\)(\(\Delta ADB\)vuông tại D)

=> \(\widehat{EDA}=90^o-40^o=50^o\)

Ta lại có: \(\widehat{DAB}< \widehat{EDA}\)(vì 40o < 50o)

=> DE < AE (quan hệ giữa góc và cạnh đối diện trong tam giác)

và \(\hept{\begin{cases}DA< AE\\DA< DE\end{cases}}\)(quan hệ giữa đường vuông góc và đường xiên)

=> DA < DE < AE (đpcm)

Bình luận (0)
TM
26 tháng 5 2018 lúc 17:03

a)Xét tam giác EAD và FAD có

AÊD= góc AFD=90*

AD là cạnh chung

góc EAD=góc FAD(tam giác ABC cân)

=>tam giác ...=...(cạnh huyền-góc nhọn)

=>DE=DF

b)Xét tam giác ABD và ACD có

BA=CA(gt)

BÂD=CÂD(gt)

AD là cạnh chung

=>tam giác ...=...(c-g-c)

=>góc BDA=CDA

mà BDA+CDA=180*

=>BDA=CDA=180*/2=90*

=>AD vuông góc với BC

c) Xét tam giác AED có: AÊD+EÂD+ góc EDA=180*

=>90*+(80*/2)+góc EAD=180*

=>90*+40*+góc EAD=180*

=>góc EAD=180*-(90*+40*)

=>góc EAD=50*

ta có:EÂD<góc ADE<AÊD(40*<50*<90*)

=>ED<AE<AD

Vậy, ED<AE<AD.

Bình luận (0)
SK
Xem chi tiết
QD
31 tháng 3 2017 lúc 16:15

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Bình luận (0)
4A
Xem chi tiết
KR
Xem chi tiết
LZ
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
HM
8 tháng 9 2023 lúc 22:10

\(ABCD\) là hình chữ nhật (gt)

Suy ra \(AB = CD\); \(AD = BC\); \(AB\) // \(CD\); \(AD\) // \(BC\) (3)

\(\widehat A = \widehat B = \widehat C = \widehat D = 90^\circ \) (1)

TH1:

Nếu \(AB = BC\) (gt) thì  \(AB = BC = CD = DA\) (2)

Từ (1), (2) suy ra \(ABCD\) là hình vuông

TH2:

Nếu \(AC\) vuông góc với \(BD\)

Mà \(ABCD\) cũng là hình bình hành

Suy ra \(ABCD\) là hình thoi

Suy ra \(AB = BC = CD = DA\) (4)

Từ (1) và (4) suy ra \(ABCD\) là hình vuông

TH3:

\(AC\) là phân giác của góc \(BAD\)

Mà \(ABCD\) là hình bình hành

Suy ra \(ABCD\) là hình thoi

Suy ra \(AB = BC = CD = DA\) (5)

Từ (1) và (5) suy ra \(ABCD\) là hình vuông

Bình luận (0)
H24
Xem chi tiết
NL
26 tháng 2 2023 lúc 15:01

Đề bài thiếu dữ liệu định vị điểm S (ví dụ SC bằng bao nhiêu đó) nên ko thể tính góc giữa SB và (ABCD)

Bình luận (0)