Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LT
Xem chi tiết
PQ
10 tháng 10 2019 lúc 0:35

\(4B=4x^2+4xy+4y^2-8x-12y+8076\)

= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)

\(+\left(2x\right)^2-8x+8076\)

= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)

đến đây thì dễ rồi

Bình luận (0)
TT
Xem chi tiết
BG
31 tháng 12 2015 lúc 10:00

bạn cứ xét mẫu là được

mẫu của chúng luôn luôn > hoặc = 0

chỉ cần xét tử thôi nha bạn

Bình luận (0)
CC
31 tháng 12 2015 lúc 11:01

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Bình luận (0)
HL
Xem chi tiết
DH
10 tháng 1 2020 lúc 22:21

Phân thức đại số

Bình luận (0)
 Khách vãng lai đã xóa
NB
Xem chi tiết
DC
30 tháng 1 2018 lúc 14:22

Kết luận:   GTNN của P là 3/4; P không có GTLN.

Giải: P là một giá trị của hàm số đã cho khi và chỉ khi tồn tại x để   \(P=\frac{x^2+x+1}{x^2+2x+1}\) (1), tức là phương trình (1) ẩn x phải có nghiệm.

Ta có  \(\left(1\right)\Leftrightarrow P\left(x^2+2x+1\right)=x^2+x+1\)\(\Leftrightarrow\left(P-1\right)x^2+\left(2P-1\right)x+\left(P-1\right)=0\).

Nếu \(P=1\) thì (1) trở thành  \(x=0\), phương trình có nghiệm x = 0.

Nếu \(P\ne1\) thì phương trình sẽ có nghiệm khi và chỉ khi  

                                  \(\Delta=\left(2P-1\right)^2-4\left(P-1\right)^2=4P-3\ge0\Leftrightarrow P\ge\frac{3}{4}\)

Vậy tập giá trị của P là   \(\frac{3}{4}\le P< +\infty\). Do đó P không có GTLN và P có GTNN = \(\frac{3}{4}\)

Bình luận (0)
AN
26 tháng 7 2017 lúc 10:29

\(P=\frac{x^2+x+1}{x^2+2x+1}=\frac{\frac{3}{4}\left(x^2+2x+1\right)+\frac{\left(x^2-2x+1\right)}{4}}{x^2+2x+1}\)

\(=\frac{3}{4}+\frac{\left(x-1\right)^2}{4\left(x+1\right)^2}\ge\frac{3}{4}\)

Dấu = xảy ra  khi \(x=1\)

Bình luận (0)
H24
Xem chi tiết
NL
23 tháng 10 2020 lúc 15:59

Đặt \(y=\frac{3x^2+2x+1}{x^2-2x+3}\Rightarrow y.x^2-2yx+3y=3x^2+2x+1\)

\(\Leftrightarrow\left(y-3\right)x^2-2\left(y+1\right)x+3y-1=0\)

\(\Delta'=\left(y+1\right)^2-\left(y-3\right)\left(3y+1\right)\ge0\)

\(\Leftrightarrow-y^2+5y+2\ge0\)

\(\Rightarrow\frac{5-\sqrt{33}}{2}\le y\le\frac{5+\sqrt{33}}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
TN
30 tháng 5 2016 lúc 17:17

\(\text{a)Để C đạt GTNN}\)

\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)

\(\Rightarrow C\ge-10\)

\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)

Bình luận (0)
TN
30 tháng 5 2016 lúc 17:28

b)\(\text{Để D đạt GTLN}\)

=>(2x-3)2+5 đạt GTNN

Mà (2x-3)2\(\ge\)5

\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)

Bình luận (0)
NN
Xem chi tiết
NL
Xem chi tiết
H24
27 tháng 7 2017 lúc 8:59

1,2 kiểu gì ẹ

3,

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge2\)

=> \(\frac{1}{x+1}\ge\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)

Làm tương tự rồi nhân lại ta được \(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

=> \(xyz\le\frac{1}{8}\).Dấu bằng khi x=y=z=1/2

4.

Ta đi CM: \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2}\) <=> \(a^4+a\left(b+c\right)^3\le\left(a^2+b^2+c^2\right)^2\)

<=> \(a\left(b+c\right)^3\le2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\)

Áp dụng BDT COSI thì

\(2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a^2\left(b+c\right)^2+\frac{\left(b+c\right)^2}{4}\ge a\left(b+c\right)^3\)

Do đó có dpcm

Làm tương tự rồi cộng lại ta đc bdt ban đầu

Dấu bằng xảy ra khi a=b=c

Bình luận (0)
PH
28 tháng 7 2017 lúc 20:40

con 2 chưa cho dương nhờ

Bình luận (0)
NL
30 tháng 7 2017 lúc 21:01

giúp đê mọi người....

Bình luận (0)
NC
Xem chi tiết