Những câu hỏi liên quan
AT
Xem chi tiết
HN
9 tháng 7 2016 lúc 22:47

O A B C H I K D E M N P Q

Đặt AB = BC =CA = a

Qua O kẻ : \(\hept{\begin{cases}DE\text{//}AB\left(D\in BC,E\in AC\right)\\MN\text{//}AC\left(M\in BC,N\in AB\right)\\PQ\text{//}BC\left(P\in AB,Q\in AC\right)\end{cases}}\)

Rõ ràng các tứ giác ABDE , ANMC , PQCB là hình thang và các tam giác ODM , OEQ , ONP là các tam giác đều có OH , OI , OK lần lượt là các đường cao.

Ta có :  BD = AE  ; DH = HM ; CQ = BP ; IQ = IE ; AN = MC ; NK = PK

=> BD + DH + CQ + IQ + AN + NK = AE + HM + BP + IE + MC +PK

=> BH + CI + AK = AI + CH + BK

Mà (BH + CI + AK) + (AI + CH + BK) = AB + BC + AC =3a

=> \(AK+BH+CI=\frac{3a}{2}\) không đổi .

Vậy tổng AK + BH + CI không phụ thuộc vào vị trí điểm O trong tam giác ABC (đpcm)

Bình luận (0)
AT
Xem chi tiết
PV
Xem chi tiết
NT
14 tháng 8 2018 lúc 13:21

dễ ẹc!!!!!!!!

Bình luận (0)
HD
1 tháng 5 2020 lúc 21:16

Trả lời :

Bn Nguyễn Tũn bảo dễ ẹt thì làm đi.

- Hok tốt !

^_^

Bình luận (0)
 Khách vãng lai đã xóa
HM
1 tháng 5 2020 lúc 21:19

dễ ẹc thì lm cho mk coi đi

mk ko bt lm

Bình luận (0)
 Khách vãng lai đã xóa
TM
Xem chi tiết
NL
3 tháng 1 2024 lúc 20:05

Do \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O

Mà \(OH\perp BE\) (giả thiết) \(\Rightarrow OH\) là đường cao đồng thời là trung trực của BE

Hay OA là trung trực của BE

\(\Rightarrow AB=AE\)

Xét hai tam giác OAB và OAE có: \(\left\{{}\begin{matrix}OB=OE=R\\AB=AE\left(cmt\right)\\OA\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAB=\Delta OAE\left(c.c.c\right)\)

\(\Rightarrow\widehat{AEO}=\widehat{ABO}=90^0\Rightarrow AE\) là tiếp tuyến của (O)

Bình luận (0)
NL
3 tháng 1 2024 lúc 20:06

loading...

Bình luận (0)
PH
Xem chi tiết
NT
11 tháng 1 2022 lúc 9:43

a: Xét tứ giác ABOC có 

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

c: Xét (O) có 

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

Xét ΔBAD vuông tại B có BE là đường cao

nên \(AE\cdot AD=AB^2\left(1\right)\)

Xét ΔOBA vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)

hay \(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

Xét ΔAEH và ΔAOD có 

\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

\(\widehat{HAE}\) chung

Do đó: ΔAEH\(\sim\)ΔAOD

Suy ra: \(\widehat{AHE}=\widehat{ADO}=\widehat{BDE}\)

Bình luận (0)
HT
Xem chi tiết
NT
9 tháng 1 2023 lúc 23:30

a Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc với BC

=>OH*OA=OB^2=R^2

b: góc ABM=góc ACM

góc HBM=90 độ-góc OMB=90 độ-góc OBM=góc ABM

=>BM là phân giác của góc ABH

Bình luận (0)
TT
Xem chi tiết
NT
23 tháng 2 2021 lúc 22:33

a) Xét tứ giác OBAC có

\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối

\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Bình luận (0)
VL
Xem chi tiết
CV
Xem chi tiết
NT
17 tháng 12 2021 lúc 19:58

Xét tứ giác OBAC có

\(\widehat{OBA}+\widehat{OCA}=180^0\)

Do đó: OBAC là tứ giác nội tiếp

Bình luận (0)