Những câu hỏi liên quan
TL
Xem chi tiết
LD
15 tháng 3 2021 lúc 20:47

x = 2020 => 2021 = x + 1

x2020 - 2021x2019 + 2021x2018 - 2021x2017 + ... + 2021x2 - 2021x + 1

= x2020 - ( x + 1 )x2019 + ( x + 1 )x2018 - ( x + 1 )x2017 + ... + ( x + 1 )x2 - ( x + 1 )x + 1

= x2020 - x2020 - x2019 + x2019 + x2018 - x2018 - x2017 + ... + x3 + x2 - x2 - x + 1

= -x + 1 = -2020 + 1 = -2019

Vậy giá trị của biểu thức = -2019

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NM
11 tháng 9 2021 lúc 7:14

\(x=2020\\ \Leftrightarrow x+1=2021\)

Thay vào biểu thức:

\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\\ =x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+x+1=1\)

Bình luận (0)
MH
11 tháng 9 2021 lúc 7:17

x=2020

=>x+1=2021

thay vào ta có

\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+2021\)

\(=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+2021\)

\(=-x+2021\)

\(=-2020+2021\)

\(=1\)

Bình luận (0)
TL
11 tháng 9 2021 lúc 7:21

\(x^6-\left(2020+1\right)x^5+\left(2020+1\right)x^4-\left(2020+1\right)x^3+\left(2020+1\right)x^2-\left(2020+1\right)x+2021\)

\(x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+2021\) (vì x=2020)

\(x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+2021\)\(=-x+2021=2021-2020=1\)

(bạn không hiểu chỗ nào thì hỏi lại mik nhé) chúc bạn buổi sáng tốt lành

Bình luận (1)
TT
Xem chi tiết
SM
29 tháng 8 2018 lúc 9:22

Thay 2021 = x + 1 vào A

A = x6 - ( x + 1 ) .x5 + ( x + 1 ). x4  -  ( x + 1 ). x3 + ( x + 1 ) .x2 - ( x + 1 ) .x + ( x + 1 )

   = x6 - x6 - x5 + x5 + x4 - x4 - x3 + x3 + x2 - x2 - x + x + 1

  = 1

Vậy A = 1

Bình luận (0)
VN
Xem chi tiết
SN
2 tháng 7 2021 lúc 9:57

a) Có x = 2020 => x + 1 = 2021. Thay 2021 = x + 1 vào A

\(A=x^6-\left(x+1\right)^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(A=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)

\(A=1\)

b) Có x = -19 => x - 1 = -20 => - ( x - 1 ) = 20. Thay 20 = - ( x - 1) vào B

\(B=x^{10}-\left(x-1\right)x^9-\left(x-1\right)x^8-\left(x-1\right)x^7-...-\left(x-1\right)x^2-\left(x-1\right)x-x+1\)

\(B=x^{10}-x^{10}+x^9-x^9+...+x^2-x^2+x-x+1\)

\(B=1\)

Chúc bạn học tốt!!!haha

Bình luận (0)
VV
Xem chi tiết
.
1 tháng 2 2021 lúc 15:08

Ta có: a = 2020 => 2021 = x + 1

f(2020) = x2014 - (x + 1) . x2013 + (x + 1) . x2012 - ... + (x + 1) . x2 - (x + 1) . x - 1

= x2014 - x2014 + x2013 + x2013 + x2012 - ... + x3 + x2 - x2 + x - 1

= x - 1 = 2020 - 1 = 2019

Vậy f(2020) = 2019

Bình luận (0)
 Khách vãng lai đã xóa
TQ
Xem chi tiết
SC
9 tháng 6 2021 lúc 14:04

f(2020) = 20206 - 2021 × 20205 + 2021 × 20204 - 2021×20203 + 2021×20202 - 2021 × 2020 + 2021 = 1

Chúc bn học tốt !!!!!!!

Bình luận (0)
 Khách vãng lai đã xóa
XO
9 tháng 6 2021 lúc 14:04

Vì x = 2020 

=> x + 1 = 2021

Khi đó f(2020) = x6 - (x + 1)x5 + (x + 1)x4 - (x + 1)x3 + (x + 1)x2 - (x + 1)x + (x + 1) 

= x6 - x6 - x5 + x5 + x4 - x4 - x3 + x3 + x2 - x2 - x + x + 1

= 1

Bình luận (0)
 Khách vãng lai đã xóa
VN
Xem chi tiết
NT
14 tháng 4 2022 lúc 20:55

x=2020 nên x+1=2021

\(P\left(x\right)=x^{2021}-x^{2020}\left(x+1\right)+x^{2019}\left(x+1\right)-....+x\left(x+1\right)-2020\)

\(=x^{2021}-x^{2021}-x^{2020}+x^{2020}-...+x^2+x-2020\)

=x-2020=0

Bình luận (0)
CD
Xem chi tiết
XO
7 tháng 3 2021 lúc 9:03

Ta có x = 2020

=> x + 1 = 2021

A = x2021 - 2021x2020 + .... + 2021x - 2021

= x2021 - (x + 1)x2020 + .... + (x + 1)x - (x + 1)

= x2021 - x2021 - x2020 + .... + x2 + x - x + 1

= 1

Vậy A = 1

Bình luận (0)
 Khách vãng lai đã xóa
NT
7 tháng 3 2021 lúc 12:15

Ta có : \(x=2020\Rightarrow x+1=2021\)

\(A=x^{2021}-\left(x+1\right)x^{2020}+\left(x+1\right)x^{2019}-\left(x+1\right)x^{2018}+...-\left(x+1\right)x^2+\left(x+1\right)x-2021\)

= x2021 - x2021 - x2020  + x2020 + x2019 - x2019 - x2018 + ... - x3 - x2 + x+ x - 2021 = x - 2021 

mà x = 2020 hay 2020 - 2021 = -1 

Vậy với x = 2020 thì A = -1

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
NT
23 tháng 3 2021 lúc 20:10

Ta có : \(x=2022\Rightarrow x-1=2021\)

hay \(B=x^{10}-\left(x-1\right)x^9-\left(x-1\right)x^8-...-\left(x-1\right)x^2-\left(x-1\right)x+5\)

\(=x^{10}-x^{10}+x^9-x^9+x^8-...-x^3+x^2-x^2+x+5\)

\(=x+5\Rightarrow B=2022+5=2027\)

Vậy với x = 2022 thì B = 2027 

Bình luận (0)
 Khách vãng lai đã xóa