Những câu hỏi liên quan
DA
Xem chi tiết
TQ
8 tháng 10 2017 lúc 21:03

\(\left(y+2\right)x^2+1=y^2\Leftrightarrow x^2y+2x^2+1-y^2=0\Leftrightarrow\)\(x^2y+2x^2+4-y^2-3=0\Leftrightarrow x^2\left(y+2\right)-\left(y^2-4\right)=3\)\(\Leftrightarrow x^2\left(y+2\right)-\left(y+2\right)\left(y-2\right)=3\)

\(\Leftrightarrow\left(y+2\right)\left(x^2-y+2\right)=3\)

Ta có bảng:

y + 213-1-3
x2 - y + 231-3-1
y-11-3-5
x00Không tồn tạiKhông tồn tại
KLChọnChọn  

 

Vậy ta tìm được cặp (x ; y) = (0 ; 1) và (0; -1).

 

Bình luận (0)
IF
8 tháng 10 2017 lúc 21:02

\(PT\Leftrightarrow x^2\left(y+2\right)+4-y^2=3\)

\(\Leftrightarrow\left(y+2\right)\left(x^2+2-x\right)=3\)

+, Trường hợp: \(\hept{\begin{cases}y+2=3\\x^2+2-x=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)

+, Trường hợp: \(\hept{\begin{cases}y+2=1\\x^2+2-x=3\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)

Bình luận (0)
AT
Xem chi tiết
AH
30 tháng 6 2023 lúc 22:12

Lời giải:

$A=(x+y)(x^2-xy+y^2)+x^2+y^2=2(x^2-xy+y^2)+x^2+y^2=2(x^2+y^2)+(x-y)^2$

$\geq 2(x^2+y^2)=(1^2+1^2)(x^2+y^2)\geq (x+y)^2=2^2=4$ (theo BĐT Bunhiacopxky)

Vậy $A_{\min}=4$. Giá trị này đạt tại $x=y=1$

Bình luận (0)
TT
Xem chi tiết
NL
2 tháng 9 2021 lúc 19:52

\(P-\dfrac{5}{2}=x+2y-\dfrac{x^2+y^2}{2}=-\dfrac{1}{2}\left(x-1\right)^2-\dfrac{1}{2}\left(y-2\right)^2+\dfrac{5}{2}\le\dfrac{5}{2}\)

\(\Rightarrow P-\dfrac{5}{2}\le\dfrac{5}{2}\Rightarrow P\le5\)

\(P_{max}=5\) khi \(\left(x;y\right)=\left(1;2\right)\)

Bình luận (1)
PB
Xem chi tiết
CT
19 tháng 9 2018 lúc 12:56

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 6 2017 lúc 4:45

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 5 2019 lúc 16:57

Bình luận (0)
H24
Xem chi tiết
DK
18 tháng 4 2021 lúc 15:58

Áp dụng BĐT cói cho 2 số ko âm ta có 

X^2+y^2 >= 2 .căn x^2 .y^2 = 2.xy= 2.6 =12 

Vậy P min =12 dấu = xảy ra khi x^2=y^2 <=> x=y 

( thông cảm mình gõ mũ ko đc ) 

Bình luận (0)
MT
Xem chi tiết
TL
1 tháng 10 2015 lúc 8:54

P = x4.y+ x+ y+ 1 

Ta có: x+ y= (x + y)- 2xy = 10 - 2xy => x+ y= (x+ y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2

=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)+ 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]+ 10.(xy - 2)2 + 45

=> P > 45 

Dấu "=" xảy ra <=> xy = 2 

Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y\(\sqrt{10}\).y + 2 = 0 

\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)

vậy  P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\)\(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)

Bình luận (0)
MT
30 tháng 9 2015 lúc 21:43

hok giỏi nhưng cx có bài bế tắc chứ bộ đâu fai hok giỏi nhất thiết là cái gì cx biết đâu

Bình luận (0)
SK
30 tháng 9 2015 lúc 21:47

Blog.Uhm.vNMiki Thảo ơi,mk đồng ý zới ý kiến của bn!

Bình luận (0)
BB
Xem chi tiết
TL
1 tháng 10 2015 lúc 8:54

P = x4.y+ x+ y+ 1 

Ta có: x+ y= (x + y)- 2xy = 10 - 2xy => x+ y= (x+ y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2

=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)+ 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]+ 10.(xy - 2)2 + 45

=> P > 45 

Dấu "=" xảy ra <=> xy = 2 

Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y\(\sqrt{10}\).y + 2 = 0 

\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)

vậy  P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\)\(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)

 

Bình luận (0)