Những câu hỏi liên quan
NQ
Xem chi tiết
NT
12 tháng 8 2021 lúc 15:03

Ta có: \(\dfrac{4}{x^2+2x-3}=\dfrac{2x-5}{x+3}-\dfrac{2x}{x-1}\)

\(\Leftrightarrow\dfrac{\left(2x-5\right)\left(x-1\right)-2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=\dfrac{4}{\left(x+3\right)\left(x-1\right)}\)

Suy ra: \(2x^2-2x-5x+5-2x^2-6x=4\)

\(\Leftrightarrow13x=-1\)

hay \(x=-\dfrac{1}{13}\)

Bình luận (0)
H24
Xem chi tiết
LM
21 tháng 12 2020 lúc 21:34

a, \(\dfrac{6-x}{4x-3}=\dfrac{2}{4x-3}\)

ĐKXĐ: \(x\ne\dfrac{3}{4}\)

PT đã cho \(\Leftrightarrow\)\(\dfrac{\left(6-x\right)\left(4x-3\right)}{4x-3}=\dfrac{2\left(4x-3\right)}{4x-3}\)

                  \(\Rightarrow6-x=2\)

                  \(\Leftrightarrow x=4\)(thỏa mãn ĐKXĐ)

 

 

Bình luận (1)
LM
21 tháng 12 2020 lúc 21:41

b, \(\dfrac{3-x}{2x-3}+x-1=\dfrac{-4}{2x-3}\)

ĐKXĐ: \(x\ne\dfrac{3}{2}\)

PT đã cho \(\Leftrightarrow\)\(\dfrac{\left(3-x\right)\left(2x-3\right)}{2x-3}+\left(x+1\right)\left(2x-3\right)=\dfrac{-4\left(2x-3\right)}{2x-3}\)

                  \(\Rightarrow3-x+2x-3x+2x-3=-8x+12\)

                  \(\Leftrightarrow8x=12\)

                  \(\Leftrightarrow x=\dfrac{3}{2}\)(không thỏa mãn ĐKXĐ)

Vậy \(x\in\varnothing\).

Bình luận (0)
H24
21 tháng 12 2020 lúc 21:41

a) ĐK: \(x\ne\dfrac{3}{4}\)

PT \(\Rightarrow27x-18-4x^2=8x-6\)

\(\Leftrightarrow4x^2-19x+12=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=\dfrac{3}{4}\left(loại\right)\end{matrix}\right.\)

  Vậy phương trình có nghiệm \(x=4\)

b) ĐK: \(x\ne\dfrac{3}{2}\)

PT \(\Rightarrow3-x+2x^2-5x+3=-4\) 

\(\Leftrightarrow x^2-3x+5=0\) (Vô nghiệm)

  Vậy phương trình vô nghiệm

c) ĐK: \(x\ne3\)

PT \(\Rightarrow2x^2-5x-3=2x-4\)

\(\Leftrightarrow2x^2-7x+1=0\) \(\Leftrightarrow x=\dfrac{7\pm\sqrt{41}}{4}\)

  Vậy phương trình có nghiệm \(x=\dfrac{7\pm\sqrt{41}}{4}\)

Bình luận (0)
DV
Xem chi tiết
TA
23 tháng 12 2021 lúc 16:43

\(ĐK:x\ne\pm\dfrac{3}{2}\\ PT\Leftrightarrow2x+3+2x-3=2x+4\\ \Leftrightarrow2x=4\Leftrightarrow x=2\left(tm\right)\)

Bình luận (0)
NT
23 tháng 12 2021 lúc 16:46

\(\dfrac{1}{2x-3}+\dfrac{1}{2x+3}=\dfrac{2x+4}{4x^2-9}\)

\(\dfrac{2x+3+2x-3}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{2x+4}{4x^2-9}\)

\(\dfrac{4x}{4x^2-9}=\dfrac{2x+4}{4x^2-9}\Rightarrow4x=2x+4\)

\(\Rightarrow2x=4\Rightarrow x=2\)

Bình luận (0)
NK
Xem chi tiết
NQ
Xem chi tiết
NT
26 tháng 8 2021 lúc 13:42

a: Ta có: \(2x+3>1-x\)

\(\Leftrightarrow3x>-2\)

hay \(x>-\dfrac{2}{3}\)

b: Ta có: \(15-2\left(x-3\right)< -2x+5\)

\(\Leftrightarrow15-2x+6+2x-5< 0\)

\(\Leftrightarrow16< 0\left(vôlý\right)\)

c: Ta có: \(\left(x+1\right)\left(x-3\right)\le\left(x+4\right)\left(x-1\right)\)

\(\Leftrightarrow x^2-3x+x-3-x^2+x-4x+4\le0\)

\(\Leftrightarrow-5x\le-1\)

hay \(x\ge\dfrac{1}{5}\)

Bình luận (0)
NQ
Xem chi tiết
NT
26 tháng 8 2021 lúc 13:49

d: Ta có: \(\dfrac{2x+1}{3}-\dfrac{1-x}{2}\ge1-\dfrac{x}{4}\)

\(\Leftrightarrow8x+4-6+6x\ge12-3x\)

\(\Leftrightarrow14x+3x\ge12+2=14\)

\(\Leftrightarrow x\ge\dfrac{14}{17}\)

e: Ta có: \(\dfrac{x+1}{2}-\dfrac{2-x}{3}< \dfrac{2x-3}{4}\)

\(\Leftrightarrow6x+12+4x-8< 6x-9\)

\(\Leftrightarrow4x< -9+8-12=-13\)

hay \(x< -\dfrac{13}{4}\)

Bình luận (0)
DV
Xem chi tiết
NT
23 tháng 2 2022 lúc 19:46

a: =>2x>=4

hay x>=2

b: =>-2x<=3

hay x>=-3/2

c: =>2x<=6

hay x<=3

Bình luận (0)
TB
Xem chi tiết
NL
16 tháng 9 2021 lúc 23:18

3.

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=cos3x\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{2}-3x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{2}-3x+k2\pi\\x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+3x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{2}\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

Bình luận (0)
TB
16 tháng 9 2021 lúc 23:07

câu 2 mình sửa lại đề bài một chút là: sin(cosx)=1 ạ

Bình luận (0)
NL
16 tháng 9 2021 lúc 23:16

1.

\(sin\left(sinx\right)=0\)

\(\Leftrightarrow sinx=k\pi\) (1)

Do \(-1\le sinx\le1\Rightarrow-1\le k\pi\le1\)

\(\Rightarrow-\dfrac{1}{\pi}\le k\le\dfrac{1}{\pi}\Rightarrow k=0\) do \(k\in Z\)

Thế vào (1)

\(\Rightarrow sinx=0\Rightarrow x=n\pi\)

2.

\(sin\left(cosx\right)=1\Leftrightarrow cosx=\dfrac{\pi}{2}+k2\pi\)

Do \(-1\le cosx\le1\Rightarrow-1\le\dfrac{\pi}{2}+k2\pi\le1\)

\(\Rightarrow-\dfrac{1}{2\pi}-\dfrac{1}{4}\le k\le\dfrac{1}{2\pi}-\dfrac{1}{4}\) 

\(\Rightarrow\) Không tồn tại k thỏa mãn

Pt vô nghiệm

Bình luận (0)
ND
Xem chi tiết
HP
31 tháng 8 2021 lúc 8:57

a, ĐK: \(x\ge2\)

\(\sqrt{2x+1}-\sqrt{x-2}=x+3\)

\(\Leftrightarrow\dfrac{x+3}{\sqrt{2x+1}+\sqrt{x-2}}=x+3\)

\(\Leftrightarrow\left(x+3\right)\left(\dfrac{1}{\sqrt{2x+1}+\sqrt{x-2}}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(l\right)\\\sqrt{2x+1}+\sqrt{x-2}=1\left(vn\right)\end{matrix}\right.\)

Phương trình vô nghiệm.

 

Bình luận (0)
HP
31 tháng 8 2021 lúc 9:02

b, ĐK: \(x\ge-1\)

\(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\)

\(\Leftrightarrow\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{\left(x+3\right)\left(x+1\right)}\)

\(\Leftrightarrow-\sqrt{x+3}\left(\sqrt{x+1}-1\right)+2x\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2x\\\sqrt{x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+3=4x^2\end{matrix}\right.\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)

Bình luận (0)
HP
31 tháng 8 2021 lúc 9:13

c, ĐK: \(x\ge-3\)

\(2\sqrt{x+3}=9x^2-x-4\)

\(\Leftrightarrow x+3+2\sqrt{x+3}+1=9x^2\)

\(\Leftrightarrow\left(\sqrt{x+3}+1\right)^2=9x^2\)

\(\Leftrightarrow\left(\sqrt{x+3}+1-3x\right)\left(\sqrt{x+3}+1+3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=3x-1\\\sqrt{x+3}=-3x-1\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}3x-1\ge0\\x+3=9x^2-6x+1\end{matrix}\right.\Leftrightarrow...\)

TH2: \(\left\{{}\begin{matrix}-3x-1\ge0\\x+3=9x^2+6x+1\end{matrix}\right.\Leftrightarrow...\)

Tự giải nha, t kh có máy tính ở đây.

Bình luận (0)