Những câu hỏi liên quan
CA
Xem chi tiết
BA
Xem chi tiết
LV
28 tháng 5 2016 lúc 15:11
HỌC TOÁNKIỂM TRABÁO CÁOTHÔNG TIN

Bài toán 104

Một số chính phương là số viết được dạng tích của một số tự nhiên với chính nó.

Ta có:

  - Số \(14\) không phải là số chính phương

  - Số \(144\) là số chính phương vì \(144=12\times12=12^2\)

  - Số \(1444\) là số chính phương vì \(1444=38\times38=38^2\) .

Bạn hãy tìm tất cả các số có dạng \(144...4\) (số có các chữ số 4 sau chữ số 1) mà là số chính phương?

----------------------

Các bạn trình bày lời giải đầy đủ vào ô Gửi Ý kiến phía dưới. Năm bạn có lời giải hay và sớm nhất sẽ được cộng/thưởng 1 tháng VIP của Online Math. Đáp án và giải thưởng sẽ được công bố vào Thứ Sáu ngày 3/6/2016. Câu đố tiếp theo sẽ lên mạng vào Thứ Bảy ngày 4/6/2016.

 

Xem thêm:

Bài toán 103Bài toán 102Bài toán 101Bài toán 100Bài toán 99

 

Hoàng Thị Thu Huyền DMCA.com Protection Status                  Gửi ý kiến 23 bình luận
  King Math09:38:50 ngày 28/05/2016 Trả lời

Đặt $a_1=14;a_2=144;a_3=1444;a_n=144...4$a1=14;a2=144;a3=1444;an=144...4, ta xét các trường hợp:

a, $n<4$n<4 

Ta dễ dàng thấy $a_1=14$a1=14 không phải là số chính phương và $a_2=144=12^2$a2=144=122 ; $a_3=1444=38^2$a3=1444=382 là các số chính phương.

b, $n\ge4$n4 

Ta có: $a_n=144...4=10000b+4444\left(b\in Z\right)$an=144...4=10000b+4444(bZ) 

Vì $10000\vdots16$1000016 và 4444 chia 16 dư 12 nên $a_n$an chia 16 dư 12

Giả sử $a_n$an là số chính phương, vì $a_n\vdots4$an4 nhưng không chia hết cho 16 nên:

$a_n=\left(4k+2\right)^2=16\left(k^2+k\right)+4$an=(4k+2)2=16(k2+k)+4 $\Rightarrow$ $a_n$an chia 16 dư 4. Vô lý.

Vậy $a_n$an không phải là số chính phương.

Kết luận: Trong dãy số tự nhiên $a_n=144...4$an=144...4, chỉ có $a_2=144$a2=144 và $a_3=1444$a3=1444 là các số chính phương.

Bình luận (0)
TN
31 tháng 5 2016 lúc 16:08

Đặt a1=14;a2=144;a3=1444;an=144..4, ta xét các trường hợp a, n<4.

Ta dễ dàng thấy a1=14 không phải là số chính phương và a2=144=122 ; a3=1444=382 là các số chính phương.

b,n>4

Ta có : an=144..4=10000b+4444(bεZ) 

Vì 10000:16 và 4444 chia 16 dư 12 nên an chia 16 dư 12

Giả sử an=(4k+2)2=16(k2+k)+4=>an chia 16 dư 4. Vô lý.

Vậy an không phải là số chính phương.

Kết luận : Trong dãy số tự nhiên an=144..4,, chỉ có a2=144 và a3=1444 là các số chính phương

Bình luận (0)
BA
28 tháng 5 2016 lúc 15:06

khocroi giúp với

 

Bình luận (0)
TN
Xem chi tiết
LG
28 tháng 5 2016 lúc 19:38

bài toán trên online math bạn tự tìm hiểu

 

Bình luận (0)
HD
Xem chi tiết
HD
Xem chi tiết
HD
Xem chi tiết
HD
Xem chi tiết
HD
Xem chi tiết
H24
Xem chi tiết