Những câu hỏi liên quan
DD
Xem chi tiết
NN
Xem chi tiết
DT
Xem chi tiết
LD
Xem chi tiết
ND
1 tháng 11 2016 lúc 19:13

f(x) = x^3 - x^2 + x - 1 

f(1) = 0

g(1) = m+x

mà g(x) = f(x) (với mọi x)

=> m+x=0

m+1=0

=>m=-1

Bình luận (0)
KS
Xem chi tiết
H24
22 tháng 5 2022 lúc 11:37

`a)M(x)=P(x)-Q(x)`

`=>M(x)=-3x^2+2x+1+3x^2-x+2`

`=>M(x)=x+3`

`b)` Cho `M(x)=0`

`=>x+3=0`

`=>x=-3`

Vậy nghiệm của `M(x)` là `x=-3`

`c)P(x)=Q(x)`

`=>-3x^2+2x+1=-3x^2+x-2`

`=>-3x^2+3x^2+2x-x=-2-1`

`=>x=-3`

Vậy `x=-3` thì `P(x)=Q(x)`

Bình luận (0)
NL
Xem chi tiết
DH
7 tháng 5 2023 lúc 11:22

a. Thay x = 1 vào đa thức ta có: 

\(1^2-4.1+4=1\)

Thay x = 2 vào đa thức ta có

\(2^2-4.2+4=0\)

Thay x = 3 vào đa thức ta có: 

\(3^2-4.3+4=1\)

Thay x = -1 vào đa thức ta có: 

\(\left(-1\right)^2-4.\left(-1\right)+4=9\)

b. Trong các số trên 2 là nghiệm của đa thức M(x)

Bình luận (0)
NH
7 tháng 5 2023 lúc 11:23

a, M(\(x\)) = \(x^2\) - 4\(x\) + 4 

M(1) = 12 - 4.1 + 4 = 1

M(2) = 22 - 4.2 + 4 = 0

M(3) = 32 - 4.3 + 4 = 1

M(-1) = (-1)2 - 4.(-1) + 4 = 9

b, Trong các số 1; 2; 3 và -1  thì 2 là nghiệm của M(\(x\)) vì M(2) = 0

Bình luận (0)
TG
7 tháng 5 2023 lúc 15:59

a. Thay x = 1 vào đa thức ta có: 

12−4.1+4=1

Thay x = 2 vào đa thức ta có

22−4.2+4=0

Thay x = 3 vào đa thức ta có: 

32−4.3+4=1

Thay x = -1 vào đa thức ta có: 

(−1)2−4.(−1)+4=9

b. Trong các số trên 2 là nghiệm của đa thức M(x)

Bình luận (0)
TP
Xem chi tiết
H24
Xem chi tiết
NH
27 tháng 1 2022 lúc 22:31

a/ Xét pt :

\(x^2-2\left(m-1\right)+2m-5=0\)

\(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+1-2m+5=m^2-4m+6=\left(m-2\right)^2+2>0\forall m\)

\(\Leftrightarrow\) pt luôn có 2 nghiệm pb với mọi m

b/ Phương trình cớ 2 nghiệm trái dấu

\(\Leftrightarrow2m-5< 0\)

\(\Leftrightarrow m< \dfrac{5}{2}\)

c/ Theo định lí Vi - et ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=2m-5\end{matrix}\right.\)

\(A=x_1^2+x_2^2\)

\(=\left(x_1+x_2\right)^2-2x_1.x_2\)

\(=4\left(m-1\right)^2-2\left(2m-5\right)\)

\(=4m^2-8m+4-4m+10\)

\(=4m^2-12m+14=4\left(m^2-3m+\dfrac{9}{4}\right)+5=4\left(m-\dfrac{3}{2}\right)^2+5\ge5\)

\(A_{min}=5\Leftrightarrow m=\dfrac{3}{2}\)

Bình luận (0)
NT
27 tháng 1 2022 lúc 22:25

1, \(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-4m+6=\left(m-2\right)^2+2>0\)

Vậy pt luôn có 2 nghiệm pb với mọi m 

2, Vì pt có 2 nghiệm trái dấu 

\(x_1x_2=\dfrac{c}{a}=2m-5< 0\Leftrightarrow m< \dfrac{5}{2}\)

3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-1\right)^2-2\left(2m-5\right)\)

\(=4m^2-12m+14=4m^2-2.2m.3+9+6\)

\(=\left(2m-3\right)^2+6\ge6\forall m\)

Dấu ''='' xảy ra khi m = 3/2 

Vậy với m = 3/2 thì A đạt GTNN tại 6 

Bình luận (1)
NT
27 tháng 1 2022 lúc 22:27

1: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-5\right)\)

\(=4m^2-8m+4-8m+20\)

\(=4m^2-16m+24\)

\(=4m^2-16m+16+8\)

\(=\left(2m-4\right)^2+8>0\forall m\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

2: Để phương trình có hai nghiệm trái dấu thì 2m-5<0

hay m<5/2

3: \(A=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(2m-2\right)^2-2\left(2m-5\right)\)

\(=4m^2-8m+4-4m+10\)

\(=4m^2-12m+14\)

\(=4m^2-12m+9+5\)

\(=\left(2m-3\right)^2+5\ge5\forall m\)

Dấu '=' xảy ra khi m=3/2

Bình luận (0)
TM
Xem chi tiết
NT
14 tháng 5 2022 lúc 7:35

Bài 1: 

\(A\left(x\right)=0\)

nên \(x^2-5mx+10m=0\)

\(\text{Δ}=\left(-5m\right)^2-4\cdot10m=25m^2-40m\)

Để phương trình có hai nghiệm thì m(25m-40)>0

=>m>8/5 hoặc m<0

Áp dụng Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=5m\\x_1x_2=10m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=2x_2\\3x_2=5m\\x_1x_2=10m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{5m}{3}\\x_1=\dfrac{10}{3}m\\\dfrac{50}{9}m^2-10m=0\end{matrix}\right.\Leftrightarrow m=\dfrac{9}{5}\)(nhận)

Bình luận (0)