Bài 1:
\(A\left(x\right)=0\)
nên \(x^2-5mx+10m=0\)
\(\text{Δ}=\left(-5m\right)^2-4\cdot10m=25m^2-40m\)
Để phương trình có hai nghiệm thì m(25m-40)>0
=>m>8/5 hoặc m<0
Áp dụng Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=5m\\x_1x_2=10m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=2x_2\\3x_2=5m\\x_1x_2=10m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{5m}{3}\\x_1=\dfrac{10}{3}m\\\dfrac{50}{9}m^2-10m=0\end{matrix}\right.\Leftrightarrow m=\dfrac{9}{5}\)(nhận)