Những câu hỏi liên quan
PU
Xem chi tiết
TL
Xem chi tiết
6R
2 tháng 12 2017 lúc 12:21

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

Bình luận (0)
HL
Xem chi tiết
DL
4 tháng 3 2022 lúc 5:27

e tham khảo:

undefined

Bình luận (0)
PN
Xem chi tiết
II
Xem chi tiết
BA
Xem chi tiết
H24
18 tháng 5 2018 lúc 20:16

\(\text{Xét: }\Delta BGA\perp G\text{ thì }BG^2+GA^2=AB^2\)

\(\Leftrightarrow\frac{4}{9}\left(BE^2+AD^2\right)=AB^2\)

\(\Leftrightarrow BE^2+\frac{1}{4}BC^2=\frac{27}{2}\)(1)

\(\text{Có trong: }\Delta ABE\text{ thì }AB^2+AE^2\)

\(\Leftrightarrow6+\frac{1}{4}AC^2=BE^2\)(2)

Từ (1) và (2), ta có: 

\(BC^2+AC^2=30\left(cm\right)\)

Mà: \(BC^2-AC^2=AB^2=6\left(cm\right)\)

Nên \(BC^2=18\)

\(\Rightarrow BC=3\sqrt{2}\left(cm\right)\)

Bình luận (0)
H24
18 tháng 5 2018 lúc 20:19

Áp dụng Pitago cho tg ABG

Áp dụng Pitago cho tg BDG

Tiếp tục làm tiếp nha bạn :")

Bình luận (0)
PT
25 tháng 6 2019 lúc 10:33

Tính cách thuận tiện : 64 x 6 + 81 x 4 + 17x 6

Bình luận (0)
PK
Xem chi tiết
NL
3 tháng 8 2021 lúc 9:45

Đề bài thiếu, dữ liệu chỉ có thế này thì không đủ để tính BC

Bình luận (0)
NM
3 tháng 8 2021 lúc 9:46

Hình như sai đề á bn

 

 
Bình luận (0)
PA
Xem chi tiết
TD
16 tháng 12 2015 lúc 21:32

Gọi G là giao điểm của AD và BE, ta có :

\(AB^2=BG.BE=\frac{2}{3}BE^2\Leftrightarrow6=\frac{2}{3}BE^2\Leftrightarrow BE=3\)

Theo định lí Pi-ta-go, ta có :

\(AE=\sqrt{BE^2-AB^2}=\sqrt{3}\Rightarrow AC=2\sqrt{3}\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{18}\)

Bình luận (0)
H24
Xem chi tiết
IN
13 tháng 3 2020 lúc 19:40

+)Xét tam giác ABC vuông tại A

 \( \implies\)\(AB^2+AC^2=BC^2\) ( Theo định lý Py - ta - go )

\( \implies\) \(c^2+b^2=BC^2\)

\( \implies\) \(BC=\sqrt{b^2+c^2}\) 

+)Ta có : \(AD=\frac{1}{2}BC\) ( AD là đường trung tuyến ứng với cạnh huyền BC )

 \( \implies\) \(AD=\frac{1}{2}.\sqrt{b^2+c^2}\)

\( \implies\) \(AD=\frac{\sqrt{b^2+c^2}}{2}\)

+)Xét tam giác BAE vuông tại A 

\( \implies\) \(BE^2=AB^2+AE^2\) ( Theo định lý Py - ta - go )

\( \implies\) \(BE^2=c^2+\left(\frac{b}{2}\right)^2\)

\( \implies\) \(BE^2=c^2+\frac{b^2}{4}\)

\( \implies\) \(BE=\sqrt{c^2+\frac{b^2}{4}}\)

+)Xét tam giác ABC có :

Hai đường trung tuyến AD ; BE cắt nhau tại G 

 \( \implies\) G là trọng tâm của tam giác ABC

\( \implies\) \(BG=\frac{2}{3}BE\)

Mà \(BE=\sqrt{c^2+\frac{b^2}{4}}\) 

\( \implies\) \(BG=\frac{2}{3}.\sqrt{c^2+\frac{b^2}{4}}\)

\( \implies\) \(BG=\frac{2}{3}.\sqrt{\frac{4c^2+b^2}{4}}\)

\( \implies\)  \(BG=\frac{2}{3}.\frac{\sqrt{4c^2+b^2}}{2}\)

\( \implies\) \(BG=\frac{\sqrt{4c^2+b^2}}{3}\)

+) \(AD=\frac{1}{2}BC=BD=DC\) ( AD là đường trung tuyến ứng với cạnh huyền BC )

+)G là trọng tâm của tam giác ABC 

\( \implies\) \(GD=\frac{1}{3}AD=\frac{1}{3}BD=\frac{1}{3}.\frac{\sqrt{b^2+c^2}}{2}=\frac{\sqrt{b^2+c^2}}{6}\) 

+)Để AD vuông góc với BE thì tam giác BGD là tam giác vuông tại G

\( \implies\) \(BG^2+GD^2=BD^2\) ( Theo định lý Py - ta - go )

 \( \implies\) \(\left(\frac{\sqrt{4c^2+b^2}}{3}\right)^2+\left(\frac{\sqrt{b^2+c^2}}{6}\right)^2=\left(\frac{\sqrt{b^2+c^2}}{2}\right)^2\)

\( \implies\) \(\frac{4c^2+b^2}{9}+\frac{b^2+c^2}{36}=\frac{b^2+c^2}{4}\)

\( \implies\)  \(\frac{4\left(4c^2+b^2\right)}{36}+\frac{b^2+c^2}{36}=\frac{9\left(b^2+c^2\right)}{36}\)

\( \implies\) \(16c^2+4b^2+b^2+c^2=9b^2+9c^2\)

\( \implies\) \(17c^2+5b^2=9b^2+9c^2\)

\( \implies\) \(8c^2=4b^2\)

\( \implies\) \(2c^2=b^2\)

\( \implies\) \(b=\sqrt{2c^2}\)

\( \implies\) \(b=\sqrt{2}c\) 

Vậy để AD vuông góc với BE thì : \(b=\sqrt{2}c\) 

Bình luận (0)
 Khách vãng lai đã xóa
H24
13 tháng 3 2020 lúc 23:12

A B C c b D E G

Bình luận (0)
 Khách vãng lai đã xóa