Cho tam giác ABC vuông tại A có 2 đường trung tuyến BE và AD vuông góc nhau. Cho AB = 3cm. Tính BC
Cho tam giác ABC Vuông tại A CÓ AD LÀ TRUNG TUYẾN A) CHỨNG MINH AD = 1/2 BC B) CHO AC=√8cm,AD=√3cm Tính AB C) Trung tuyến BE CỦA TAM GIÁC ABC CẮT AD Ở G TÍNH BE VÀ CMR TAM GIÁC AGB Vuông
Cho tam giác ABC có trung tuyến AD và BE vuông góc với nhau tại O. Cho BC=a, AC=b. Tính diện tích hình vuông có cạnh là AB
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Cho tam giác ABC vuông tại B và AB=3cm,BC=4 cm.Vẽ BE là đường trung tuyến của tam giác ABC.
A) Tính AC và BE (Biết: Trong một tam giác vuông đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền.)
B)Trên tia đối của tia BC lấy điểm D sao cho AD=AC.Chứng minh AB là đường trung tuyến của tam giác ADC.
C)Gọi G là giao điểm của DE và AB;N là trung điểm của AD.Chứng minh: G là trọng tâm của tam giác ADC.Từ đó suy ra :C, G, N thẳng hàng.
D)Chứng minh: DE=CN
Cho tam giác ABC có hai đường trung tuyến AD và BE vuông góc với nhau tại O (E thuộc AC,D thuộc BC). Giả sử AC=b,BC=a,hãy tính diện tích hình vuông có cạnh là AB theo a và b.
Cho tam giác ABC có AC=5, BC=6 và AD, BE là các đường trung tuyến vuông góc tại O. tính AB
Cho tam giác ABC vuông tại A. Các đường trung tuyến AD và BE vuông góc với nhau tại G. Biết AB = \(\sqrt{6}\) cm. Tính cạnh huyền BC
\(\text{Xét: }\Delta BGA\perp G\text{ thì }BG^2+GA^2=AB^2\)
\(\Leftrightarrow\frac{4}{9}\left(BE^2+AD^2\right)=AB^2\)
\(\Leftrightarrow BE^2+\frac{1}{4}BC^2=\frac{27}{2}\)(1)
\(\text{Có trong: }\Delta ABE\text{ thì }AB^2+AE^2\)
\(\Leftrightarrow6+\frac{1}{4}AC^2=BE^2\)(2)
Từ (1) và (2), ta có:
\(BC^2+AC^2=30\left(cm\right)\)
Mà: \(BC^2-AC^2=AB^2=6\left(cm\right)\)
Nên \(BC^2=18\)
\(\Rightarrow BC=3\sqrt{2}\left(cm\right)\)
Áp dụng Pitago cho tg ABG
Áp dụng Pitago cho tg BDG
Tiếp tục làm tiếp nha bạn :")
Tính cách thuận tiện : 64 x 6 + 81 x 4 + 17x 6
Cho tam giác ABC vuông tại A, các đường trung tuyến AD,BE cắt nhau tại G. Tính BC biết AB=√6cm
Đề bài thiếu, dữ liệu chỉ có thế này thì không đủ để tính BC
Cho tam giác ABC vuông tại A có các đường trung tuyến AD và BE vuông góc với nhau . Biết AB= \(\sqrt{6}\) thì BC=?
Gọi G là giao điểm của AD và BE, ta có :
\(AB^2=BG.BE=\frac{2}{3}BE^2\Leftrightarrow6=\frac{2}{3}BE^2\Leftrightarrow BE=3\)
Theo định lí Pi-ta-go, ta có :
\(AE=\sqrt{BE^2-AB^2}=\sqrt{3}\Rightarrow AC=2\sqrt{3}\)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{18}\)
Cho tam giác ABC vuông tại A và có AC = b ; AB = c . Hai đường trung tuyến AD ; BE cắt nhau tại G . Tìm hệ thức giữa b ; c để AD vuông góc với BE
+)Xét tam giác ABC vuông tại A
\( \implies\)\(AB^2+AC^2=BC^2\) ( Theo định lý Py - ta - go )
\( \implies\) \(c^2+b^2=BC^2\)
\( \implies\) \(BC=\sqrt{b^2+c^2}\)
+)Ta có : \(AD=\frac{1}{2}BC\) ( AD là đường trung tuyến ứng với cạnh huyền BC )
\( \implies\) \(AD=\frac{1}{2}.\sqrt{b^2+c^2}\)
\( \implies\) \(AD=\frac{\sqrt{b^2+c^2}}{2}\)
+)Xét tam giác BAE vuông tại A
\( \implies\) \(BE^2=AB^2+AE^2\) ( Theo định lý Py - ta - go )
\( \implies\) \(BE^2=c^2+\left(\frac{b}{2}\right)^2\)
\( \implies\) \(BE^2=c^2+\frac{b^2}{4}\)
\( \implies\) \(BE=\sqrt{c^2+\frac{b^2}{4}}\)
+)Xét tam giác ABC có :
Hai đường trung tuyến AD ; BE cắt nhau tại G
\( \implies\) G là trọng tâm của tam giác ABC
\( \implies\) \(BG=\frac{2}{3}BE\)
Mà \(BE=\sqrt{c^2+\frac{b^2}{4}}\)
\( \implies\) \(BG=\frac{2}{3}.\sqrt{c^2+\frac{b^2}{4}}\)
\( \implies\) \(BG=\frac{2}{3}.\sqrt{\frac{4c^2+b^2}{4}}\)
\( \implies\) \(BG=\frac{2}{3}.\frac{\sqrt{4c^2+b^2}}{2}\)
\( \implies\) \(BG=\frac{\sqrt{4c^2+b^2}}{3}\)
+) \(AD=\frac{1}{2}BC=BD=DC\) ( AD là đường trung tuyến ứng với cạnh huyền BC )
+)G là trọng tâm của tam giác ABC
\( \implies\) \(GD=\frac{1}{3}AD=\frac{1}{3}BD=\frac{1}{3}.\frac{\sqrt{b^2+c^2}}{2}=\frac{\sqrt{b^2+c^2}}{6}\)
+)Để AD vuông góc với BE thì tam giác BGD là tam giác vuông tại G
\( \implies\) \(BG^2+GD^2=BD^2\) ( Theo định lý Py - ta - go )
\( \implies\) \(\left(\frac{\sqrt{4c^2+b^2}}{3}\right)^2+\left(\frac{\sqrt{b^2+c^2}}{6}\right)^2=\left(\frac{\sqrt{b^2+c^2}}{2}\right)^2\)
\( \implies\) \(\frac{4c^2+b^2}{9}+\frac{b^2+c^2}{36}=\frac{b^2+c^2}{4}\)
\( \implies\) \(\frac{4\left(4c^2+b^2\right)}{36}+\frac{b^2+c^2}{36}=\frac{9\left(b^2+c^2\right)}{36}\)
\( \implies\) \(16c^2+4b^2+b^2+c^2=9b^2+9c^2\)
\( \implies\) \(17c^2+5b^2=9b^2+9c^2\)
\( \implies\) \(8c^2=4b^2\)
\( \implies\) \(2c^2=b^2\)
\( \implies\) \(b=\sqrt{2c^2}\)
\( \implies\) \(b=\sqrt{2}c\)
Vậy để AD vuông góc với BE thì : \(b=\sqrt{2}c\)