Cho tam giác ABC cân tại A vẽ BH vuông góc với AC ; CK vuông góc với AB a) vẽ hình b) chứng minh AH = AK c) gọi I là giao điểm của BH và CK . Chứng minh Góc KAI = góc HAI d) AI cắt BC tại P . Chứng minh AI vuông góc BC tại P
Cho tam giác ABC cân tại A ( góc A < 90 độ ) , kẻ BH vuông góc với AC tại H . Tren đáy BC lấy M , vẽ MD vuông góc với AB tại D ; ME vuông góc với AC tại E : MF vuông góc với BH tại F .
a, CM tam giác DBM = tam giác FMB.
b, CM DF song song với BC
cho tam giác abc cân tại a vẽ bh vuông góc với ac lấy điểm m tùy ý trên cạnh bc . vẽ mk vuông góc với ab ,mi vuông góc với ac . chứng minh MK+MI=BH
Kẻ ME vuông góc BH
=>ME//AC
Xét ΔKBM vuông tại K và ΔEMB vuông tại E có
BM chung
góc KBM=góc EMB
=>ΔKBM=ΔEMB
=>MK=BE
Xét tứ giác EHIM có
EH//IM
EM//IH
=>EHIM là hình bình hành
=>MI=EH
=>MK+MI=BH
cho tam giác ABC . Vẽ BH vuông góc với AC, CI vuông góc với AB, BH và CI cắt nhau tại M. Biết MI=MH. Cm tam giác ABC cân
Xét tam giác IMB và tam giác HMC có :
góc BIM = góc CHM ( = 90 độ )
MI = MH (gt)
góc IMB = góc HMC ( đối đỉnh )
=> Tam giác IMB = tam giác HMC ( g-c-g )
=> MB = MC và góc IBM = góc HCM (1)
Xét tam giác MBC có : MB = MC (cmt)
=> Tam giác MBC cân tại M
=> góc MBC = góc MCB (2)
Từ (1) và (2) => góc ABC = góc ACB
Xét ta giác ABC có : góc ABC = góc ACB (cmt)
=> Tam giác ABC cân tại A (đpcm)
Vẽ hình khó quá nên mk xin phép k vẽ nha ^^
M là giao của 2 đường cao BH và CI của tam giác ABC => M là trực tâm của tam giác ABC.
=> AM vuông góc với BC.
Xét tam giác AMI vuông tại I và tam giác AMH vuông tại H có
AM chung
MI = MH( gt)
=> \(\Delta AMI=\Delta AMH\)(cạnh huyền - cạnh góc vuông)
=> \(\widehat{IAM}=\widehat{HAM}\)=> AM là phân giác góc BAC.
Tam giác ABC có AM là đường phân giác, vừa là đương cao => Tam giác ABC cân tại A( đpcm)
Xét tam giác IMB và tam giác HMC có :
góc BIM = góc CHM ( = 90 độ )
MI = MH (gt)
góc IMB = góc HMC ( đối đỉnh )
=> Tam giác IMB = tam giác HMC ( g-c-g )
=> MB = MC và góc IBM = góc HCM (1)
Xét tam giác MBC có : MB = MC (cmt)
=> Tam giác MBC cân tại M
=> góc MBC = góc MCB (2)
Từ (1) và (2) => góc ABC = góc ACB
Xét ta giác ABC có : góc ABC = góc ACB (cmt)
=> Tam giác ABC cân tại A (đpcm)
cho tam giác ABC cân tại A, vẽ BH vuông góc với AC tại H, vẽ CK vuông góc với AB tại K A) chứng minh tam giác BHC bằng tam giác CKB B) chứng minh tam giác AHK cân C) chứng minh HK // BC D)gọi O là giao điểm của BH và CK, M là trung điểm của BC.Chứng minh ba điểm A,O,M thẳng hàng
a) Xét ΔBHC vuông tại H và ΔCKB vuông tại K có
CB chung
\(\widehat{BCH}=\widehat{CBK}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBHC=ΔCKB(cạnh huyền-góc nhọn)
b) Ta có: ΔBHC=ΔCKB(cmt)
nên HC=KB(hai cạnh tương ứng)
Ta có: AK+KB=AB(K nằm giữa A và B)
AH+HC=AC(H nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và KB=HC(cmt)
nên AK=AH
Xét ΔAKH có AK=AH(cmt)
nên ΔAKH cân tại A(Định nghĩa tam giác cân)
c) Ta có: ΔAKH cân tại A(cmt)
nên \(\widehat{AKH}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAKH cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)
mà \(\widehat{AKH}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên HK//BC(Dấu hiệu nhận biết hai đường thẳng song song)
d) Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)
nên \(\widehat{ABH}=\widehat{ACK}\)(hai góc tương ứng)
hay \(\widehat{KBO}=\widehat{HCO}\)
Xét ΔKBO vuông tại K và ΔHCO vuông tại H có
KB=HC(cmt)
\(\widehat{KBO}=\widehat{HCO}\)(cmt)
Do đó: ΔKBO=ΔHCO(cạnh góc vuông-góc nhọn kề)
nên OB=OC(hai cạnh tương ứng)
Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: OB=OC(cmt)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)
Từ (3), (4) và (5) suy ra A,O,M thẳng hàng(đpcm)
Cho tam giác ABC cân tại A (góc A < 90 độ). Vẽ AH vuông góc với BC tại H.
a. Chứng minh tam giác AHC = tam giác AHB
b. Biết AB=15cm, bh=9cm. Tính dộ dài đoạn thẳng AH
c. Vẽ hm vuông góc với ac(m ∈ ab), hn vuông góc với ac(n ∈ ac). chứng minh rằng am=an
d. chứng minh rằng mn // bc
nhanh giúp mình với đang cần gấp
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: AH=12cm
c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
d: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
1) Tam giác ABC vuông tại A. Vẽ ở phía ngoài các tam giác ABD, ACE vuông cân tại A. Có AH là đường cao tam giác ABC, AH cắt DE tại K. CMR: K là trung điểm DE.
2) Cho tam giác cân ABC, M bất kì thuộc BC. Kẻ ME, MF vuông góc với AC, AB. Kẻ BH vuông góc AC. Chứng minh ME + MF = BH
cho tam giác ABC cân tại A . Vẽ AH xuông góc với BC tại H . Vẽ HD vuông góc với AB tại D , HE vuông góc với AC tại E . chứng minh rằng
a) BH = HC
b) BD = CE
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có
HB=HC
góc B=góc C
=>ΔHDB=ΔHEC
=>BD=CE
Cho tam giác ABC cân tại A .Gọi M là trung điểm của BC
a)Chứng minh tam giác ABC=ACM
b)Vẽ MH vuông góc với AB :MK vuông góc với AC
Chứng minh BH=CK
c)Từ B vẽ BP vuông góc với AC (P thuộc AC) PB cắt MH tại I .Chứng minh tam giác IBM cân
Cho tam giác ABC cân tại A .Gọi M là trung điểm của BC
a)Chứng minh tam giác ABC=ACM
b)Vẽ MH vuông góc với AB :MK vuông góc với AC
Chứng minh BH=CK
c)Từ B vẽ BP vuông góc với AC (P thuộc AC) PB cắt MH tại I .Chứng minh tam giác IBM cân
cho tam giác ABC cân tại A ,vẽ BH vuông góc với AC, biết góc A = 50 độ
TÍNH CÓ CÁCH LÀM NHA MN