Cho tam giác ABC vuông tại A. Lấy M thuộc AC sao cho MA
Cho tam giác ABC có AB=AC. Tia phân giác của góc A cắt BC tại M.
a,Chứng minh tam giác AMB bằng tam giác AMC
b,Trên tia đối của MA lấy điểm D sao cho MD= MA. chứng minh AB // DC
c,Qua M vẽ ME vuông góc với AB( E thuộc AB) và MF vuông góc với AC( F thuộc AC) Chứng minh ME=MF
d, Chứng minh EM vuông góc với CD
Cho tam giác ABC có AB=AC. Tia phân giác của góc A cắt BC tại M a) Chứng minh sAMB=AAMC b) Trên tia đối của tia MA lấy điểm D sao cho MD=MA. Chứng minh AB//DC c) qua M vẽ ME vuông góc với AB(E thuộc AB), MF vuông góc với AC (F thuộc AC). Chứng minh ME=MF d) Chứng minh EM vuông góc với CD
a: Xét ΔAMB và ΔAMC có
AM chung
\(\widehat{BAM}=\widehat{CAM}\)
AB=AC
Do đó: ΔABM=ΔACM
Cho tam giác ABC vuông tại A,phân giác góc B cắt AC tại D,DH vuông BC(H thuộc BC),trên tia đối tia AB lấy M sao cho MA=HC.Chứng minh rằng H,D,M thẳng hàng
HELP
Cho tam giác ABC vuông tại A,phân giác góc B cắt AC tại D,DH vuông BC(H thuộc BC),trên tia đối tia AB lấy M sao cho MA=HC.Chứng minh rằng H,D,M thẳng hàng
HELP
Cho tam giác ABC , Mlà trung điểm của BC , Trên tia đổi của tia MA lấy điểm K sao cho MK = MA a ) Chứng minh tam giác ABC = tam giác KMB b) Chứng minh AC//BK c ) từ M kẻ MH vuông góc với AC ( H thuộc AC ) , kẻ MI vuông góc với BK ( I thuộc BK) . Chứng minh MH = MI d) Trên nửa mặt phẳng không chứa C có bờ AB , vẽ tia Ax vuông góc với AB , trên ta đó lấy điểm D sao cho A = AB . Trên nửa mặt phẳng ko chứa tia B có bờ AC , vẽ tia Ay vuông góc với AC , trên tia đó lấy điểm E sao cho AE = AC , Chứng minh rằng AM = DE/2
b: Xét tứ giác ABKC có
M là trung điểm của BC
M là trung điểm của AK
Do đó: ABKC là hình bình hành
Suy ra: AC//BK
cho tam giác ABC vuông tại A ( AB < AC ). M là trung điểm của BC . Trên tia đối MA lấy K sao cho MK = MA . Vẽ AH vuông góc với BC ( A thuộc BC ) . Trên tia đối của tia HA lấy D sao cho HD = HA
a) Chứng minh tam giác BHA = tam giác BHD
b)Cm tam giác MAD cân
c)Cm KD //BC
cho tam giác ABC vuông tại A có AB=6cm BC=10cm gọi M là trung điểm BC trên tia đối MA lấy D sao cho MD=MA
a.tính AC, tính ABD
b.chứng minh tam giác AMB = tam giác DMC, tam giác ABC = tam giác BAD
c.trên cạch AC lấy E, trên BD lấy F sao cho AE=DF chứng minh E M F thẳng hàng
d, so sánh AM và BC
a: AC=8cm
Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: \(\widehat{ABD}=90^0\)
b: Xét ΔAMB và ΔDMC có
MA=MD
MB=MC
AB=DC
Do đó: ΔAMB=ΔDMC
Xét ΔABC và ΔBAD có
BA chung
BC=AD
AC=BD
Do đó: ΔABC=ΔBAD
c: Xét tứ giác AEDF có
AE//DF
AE=DF
Do đó AEDF là hình bình hành
Suy ra: HAi đường chéo AD và EF cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của AD
nên M là trung điểm của FE
hay F,M,E thẳng hàng
Bài 1: Cho tam giác ABC lấy M thuộc cạnh AB sao cho MA=MB. Qua M kẻ đường thẳng song song với BC cắt AC tại N .
a) Chứng minh: N là trung điểm của AC.
b) Chứng minh: MN là đường trung bình của tam giác ABC .
Bài 2: Cho tam giác ABC vuông tại A, AB=5cm;BC=13cm.
a) Tính AC
b)Qua trung điểm M của AB , vẽ một đường thẳng song song với AC cắt BC tại N . Tính độ dài MN ?
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
MN//BC
Do đó: N là trung điểm của AC
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Bài 2:
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=12(cm)
b: Xét ΔABC có
MN//AC
nên \(\dfrac{MN}{AC}=\dfrac{BM}{AB}\)
hay MN=6(cm)
Bài 1: Cho tam giác ABC lấy M thuộc cạnh AB sao cho MA=MB. Qua M kẻ đường thẳng song song với BC cắt AC tại N .
a) Chứng minh: N là trung điểm của AC.
b) Chứng minh: MN là đường trung bình của tam giác ABC .
Bài 2: Cho tam giác ABC vuông tại A, AB=5cm;BC=13cm.
a) Tính AC
b) Qua trung điểm M của AB , vẽ một đường thẳng song song với AC cắt BC tại N . Tính độ dài MN ?
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
MN//BC
Do đó: N là trung điểm của AC
b: Xét ΔACB có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Bài 2:
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=12(cm)
b: Xét ΔABC có
M là trung điểm của AB
MN//AC
Do đó: N là trung điểm của BC
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: \(MN=\dfrac{AC}{2}=\dfrac{12}{2}=6\left(cm\right)\)