tìm parabol y=ax^2-bx+c có đỉnh I(1,5) và đi qua điểm A(4,-3)
Tìm Parabol 2 (P): y=ax2+bx+c đi qua điểm A(1;0) và có tung độ đỉnh bằng -1
Tìm Parabol (P): y=ax2+bx+c đi qua điểm A(1;0) và có tung độ đỉnh bằng -1
Tìm Parabol (P)=ax^2+bx+c biết (P) có tung độ đỉnh bằng 1 và đi qua hai điểm A(2,0), B(-2,-8)
\(\left\{{}\begin{matrix}\dfrac{4ac-b^2}{4a}=1\\4a+2b+c=0\\4a-2b+c=-8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4ac-b^2=4a\\4a+2b+c=0\\4b=8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}b=2\\4ac-4=4a\\4a+4+c=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\ac-1=a\\c=-4a-4\end{matrix}\right.\)
\(\Rightarrow a\left(-4a-4\right)-1=a\)
\(\Rightarrow4a^2+5a+1=0\) \(\Rightarrow\left[{}\begin{matrix}a=-1\Rightarrow c=0\\a=-\dfrac{1}{4}\Rightarrow c=-3\end{matrix}\right.\)
Vậy có 2 pt (P): \(\left[{}\begin{matrix}y=-x^2+2x\\y=-\dfrac{1}{4}x^2+2x-3\end{matrix}\right.\)
tìm parabol y= ax^2 +bx+c biết rằng parabol đó:
a/ đi qua 3 điểm A (-1;2) ; B( 2;0) ; C( 3;1)
b/ có đỉnh S ( 2;-1) và cắt trục tung tại điểm có tung độ bằng -3
c/ đạt cực đại tại I (1;3) và đi qua gốc tọa độ
d/ đạt cực tiểu bằng 4 tại x= -2 và đi qua B(0;6)
e/ cắt ox tại 2 điểm có hoành độ là -1 và 2, cắt oy tại điểm có tung độ bằng -2
Xác định a, b, c biết parabol y = ax2 + bx + c Có đỉnh I(1 ; 4) và đi qua điểm D(3 ; 0)
(P) : y = ax2 + bx + c
Parabol có đỉnh I(1 ; 4) ⇒ –b/2a = 1 ⇒ b = –2a ⇒ 2a + b = 0.
Parabol đi qua I(1; 4) ⇒ 4 = a.12 + b . 1 + c ⇒ a + b + c = 4.
Paraol đi qua D(3; 0) ⇒ 0 = a.32 + b.3 + c ⇒ 9a + 3b + c = 0.
Giải hệ phương trình
ta được : a = –1 ; b = 2 ; c = 3.
Vậy a = –1 ; b = 2 ; c = 3.
Cho (P) : y= x^2 + bx+ c. Tìm các số b,c để đồ thị là một parabol thỏa:
a) Đỉnh A(1;2)
b) Đỉnh I(-3;1)
c) Đi qua điểm M(1;-1) và có hoành độ đỉnh bằng 4.
d) Đi qua M(1;2) và có hoành độ đỉnh là 2.
e) Đi qua A(3;3) và có trục đối xứng là đường thẳng x = 1.
Biết rằng parabol (P): y=ax2+bx+c đi qua điểm A(1;1) và có đỉnh I( -1;5).Tính giá trị của biểu thức 3a+2b+c
(P) có đỉnh là I(-1;5) => \(-\frac{b}{2a}=-1\Rightarrow b=2a\) (1)
và (P) đi qua I(-1; 5) => tại x = -1; y = 5 thì a - b + c = 5 (2)
(P) đi qua điểm A(1; 1) => tại x = 1; y = 1 thì a + b + c = 1(3)
thế (1) vào (2): -a + c = 5
thế (1) vào (3): 3a + c = 1
giải hệ phtrinh ta được a = -1; c = 4
=> b = 2a = -2
giá trị biểu thức 3a + 2b + c = -3 - 4 + 4 = -3
cảm ơn bạn rất nhiều
Cho (P): y = ax° + bx + c. Tìm các số a,b,c để đồ thị là một parabol thỏa:
a) Đi qua A(0;1), B(1;2), C(3;-1)
b) Đi qua ba điểm M(0;-1) và N(1;0) và P(2;3).
c) Đi qua M(1;-2), N(0;4), P(2;1)
d) Đi qua A(3;1), B(-1;2) và có hoành độ đỉnh bằng 2.
a: Vì (P) đi qua A(0;1); B(1;2); C(3;-1) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0^2+b\cdot0+c=1\\a\cdot1^2+b\cdot1+c=2\\a\cdot3^2+b\cdot3+c=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=1\\a+b+1=2\\9a+3b+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\a+b=1\\9a+3b=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=1\\9a+9b=9\\9a+3b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\6b=11\\a+b=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=1\\b=\dfrac{11}{6}\\a=1-\dfrac{11}{6}=-\dfrac{5}{6}\end{matrix}\right.\)
b: Vì (P) đi qua M(0;-1); N(1;0) và P(2;3) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0^2+b\cdot0+c=-1\\a\cdot1^2+b\cdot1+c=0\\a\cdot2^2+b\cdot2+c=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=-1\\a+b-1=0\\4a+2b-1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a+b=1\\4a+2b=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=-1\\a+b=1\\2a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\-a=-1\\a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a=1\\b=0\end{matrix}\right.\)
c: Vì (P) đi qua M(1;-2); N(0;4); P(2;1) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot1^2+b\cdot1+c=-2\\a\cdot0^2+b\cdot0+c=4\\a\cdot2^2+b\cdot2+c=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a+b+c=-2\\c=4\\4a+2b+c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b=-2-c=-6\\4a+2b=1-4=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=4\\4a+4b=-24\\4a+2b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\2b=-21\\a+b=-6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=4\\b=-\dfrac{21}{2}\\a=-6-b=-6+\dfrac{21}{2}=\dfrac{9}{2}\end{matrix}\right.\)
d: Hoành độ đỉnh là 2 nên -b/2a=2
=>b=-4a(1)
Thay x=3 và y=1 vào (P), ta được:
\(a\cdot3^2+b\cdot3+c=1\)
=>\(9a+3b+c=1\left(2\right)\)
Thay x=-1 và y=2 vào (P), ta được:
\(a\cdot\left(-1\right)^2+b\left(-1\right)+c=2\)
=>a-b+c=2(3)
Từ (1),(2),(3), ta có hệ phương trình:
\(\left\{{}\begin{matrix}b=-4a\\9a+3b+c=1\\a-b+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\9a-12a+c=1\\a+4a+c=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=-4a\\-3a+c=1\\5a+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\-8a=-1\\5a+c=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=\dfrac{1}{8}\\b=-4\cdot\dfrac{1}{8}=-\dfrac{1}{2}\\c=2-5a=2-\dfrac{5}{8}=\dfrac{11}{8}\end{matrix}\right.\)