cho \(\Delta ABC\)vuông cân tại A biết AB =15 cm.
a, tính BC
b,tính diện tích \(\Delta ABC\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC vuông có AB = 9cm , AC = 12cm . Vẽ phân giác BD
a) Tính BD , AD
b) Qua D vẽ đường thẳng vuông góc với BC tại H , cắt tia BA tại E . chứng minh \(\Delta ABC\) đồng dạng \(\Delta HDC\) . Tính diện tích \(\Delta ADE\)
Xin lỗi mấy bạn . Mình bị thiếu chỗ (cho tam giác ABC vuông tại A)
Bài1: Cho \(\Delta ABC\)vuông tại A có AB = 5cm, AC = 12cm, từ trung điểm của BC kẻ đường thằng vuông góc với BC cắt AC tại N. Tính MN
Bài 2: Cho hình thang cân ABCD có AB = 10 song song với CD = 26 biết AC vuông góc với AD tính diện tích ABCD
Bài 2: Từ A kẻ H, từ B kẻ K
Suy ra: AB=HK=10cm
=> BH=KC=\(\frac{26-10}{2}=8\)cm
=> BH=8 và HC= 10+8=18
=> AH2= HB.HC=8.18 <=>AH= 12
=> S= \(\frac{10+26}{2}.12=216\) cm2
Bài 1: \(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}\)
\(\Leftrightarrow BC=\sqrt{5^2+12^2}=13\)
Suy ra: BM=MC=BC/2=6,5
\(\Rightarrow MN^2=NC^2-MC^2\) (Tam giác MNC vuông tại M)
\(\Leftrightarrow MN=\sqrt{12^2-6,5^2}=\frac{\sqrt{407}}{2}\)
sai rồi bạn ơi
Bài 1 : cho \(\Delta ABC\) vuông tại A , đường cao AH (H thuộc BC) . Biết BH =4cm , CH= 9cm . Gọi I,K lần lượt là hình chiếu của H lên AB và AC . Chứng minh rằng
a, Tứ giác AIHk là hình chữ nhật
b, \(\Delta AKI\) \(\sim\Delta ABC\)
c, Tính diện tích \(\Delta ABC\)
Bài 2 : Cho hình thang vuông ABCD ( góc A = góc D =\(90^0\) ) , AB=6cm , CD=12 cm, AD=17 cm . Trên cạch AD , đặt đoạn AE = 8 cm
a, C/m : \(\Delta ABE\sim\Delta DEC\)
b, tính tỉ số diện tích \(\Delta ABE\) và diện tích \(\Delta DEC\)
c, Tính BC
Bài 3: Cho tam giác ABC vuông tại A , có AB=3cm, AC=5cm , đường phân giác AD . Đường vuông góc với DC cắt AC ở E
a, Chứng minh rằng \(\Delta ABC\sim\Delta DEC\)
b, Tính độ dài các đoạn thẳng BC , BD
c, Tính độ dài AD
d, Tính diện tích \(\Delta ABC\) và diện tích tứ giác ABDE
Bài 1)
a) Tứ giác AIHK có 3 góc vuông \(\widehat{HKA}=\widehat{HIA}=\widehat{KAI}=90^0\)
Nên suy ra góc còn lại cũng vuông.Tứ giác có 4 góc vuông là hình chữ nhật
b) Câu này không đúng rồi bạn
Nếu thực sự hai tam giác kia đồng dạng thì đầu bài phải cho ABC vuông cân
Vì nếu góc AKI = góc ABC = 45 độ ( IK là đường chéo đồng thời là tia phân giác của hình chữ nhật)
c) Ta có : Theo hệ thức lượng trong tam giác ABC vuông
\(AB^2=BC.BH=13.4\)
\(\Rightarrow AB=2\sqrt{13}\)
\(AC=\sqrt{9\cdot13}=3\sqrt{13}\)
Vậy \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot13}{2}=39\left(cm^2\right)\)
Bài 2)
a) \(ED=AD-AE=17-8=9\)
Xét tỉ lệ giữa hai cạnh góc vuông trong hai tam giác ABE và DEC ta thấy
\(\frac{AB}{AE}=\frac{ED}{DC}\Leftrightarrow\frac{6}{8}=\frac{9}{12}=\frac{3}{4}\)
Vậy \(\Delta ABE~\Delta DEC\)
b) \(\frac{S_{ABE}}{S_{DEC}}=\frac{AB\cdot AE\cdot\frac{1}{2}}{DE\cdot DC\cdot\frac{1}{2}}=\frac{6\cdot8}{9\cdot12}=\frac{4}{9}\)
c) Kẻ BK vuông góc DC.Suy ra tứ giác ABKD là hình chữ nhật vì có 4 góc vuông
Nên BK = AD và AB = DK
\(\Rightarrow KC=DC-DK=12-6=6\)
Theo định lý Pytago ta có
\(BC=\sqrt{BK^2+KC^2}=\sqrt{17^2+6^2}=5\sqrt{13}\)
Cho \(\Delta\)ABC vuông tại A, chiều cao AH. Biết HB= 9cm, HC= 16cm. Tính diện tích \(\Delta\)ABC?
xet tam giac ABC co AC^2 = BC^2 - AB^2 (py ta go) vi HB+HC=BC suy ra BC=16+9=25
xet tam giac AHC co AH^2 = AC^2 - HC^2 (1)
xet tam giac AHB co AH^2 = AB^2 - HB^2 = BC^2 - Ac^2 -HC^2 (2)
tu (1) va (2) suy ra AC^2 - HC^2 = BC^2 - AC^2 - HB^2
suy ra 2AC^2 = BC^2 + HC^2 - HB^2 = 25^2 + 16^2 -9^2 =800 suy ra AC^2 =400 cm
Vi AH^2 = AC^2 - HC^2 = 400 - 16^2 = 144 suy ra AH=12cm
4. Cho \(\Delta\)ABC vuông tại A , đường cao AH. Biết AC=4cm, BC=5cm
a. Tính AB,AH,HB,HC
b. Tính diện tích, chu vi của tam giác ABC và đường trung tuyến AM
c. Kẻ đường cao MI của tam giác AMC. Tính Mi
a: AB=căn 5^2-4^2=3cm
Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC; AC^2=CH*BC; AH*BC=AB*AC
=>AH=3*4/5=2,4cm; BH=3^2/5=1,8cm
CH=5-1,8=3,2cm
b: C=3+4+5=12cm
S=1/2*3*4=6cm2
AM=BC/2=2,5cm
c: MA=MC=2,5cm
AC=4cm
ΔMAC cân tại M có MI là đường cao
nên I là trung điểm của AC
=>IA=IC=AC/2=2cm
MI=căn MA^2-IA^2=1,5cm
Cho \(\Delta ABC\) cân tại A có AB=AC=5cm, BC=6cm. Phân giác góc B giao AC tại M, phân giác góc C giao AB tại N
a, Chứng minh MN//BC
b, ΔANC ∼ ΔAMB
c, Tính AM, MN
d, \(S_{AMN}\)=?
Giúp mình với (T^T)
Bài 1: Cho tam giác ABC, các đường cao BH và CE cắt nhau tại I. Chứng minh rằng:
a/ AE * AB = AD * AC
b/ AED = ACB
c/ Tính diện tích \(\Delta ABC\)biết AC = 6 cm, BC = 5 cm, CD = 3cm.
d/ \(BE.BA+CD.CA=BC^2\)
Bài 2: Cho tam giác ABC cân tại A có AB = AC = 5 cm, BC = 6 cm. Phân giác góc B cắt AC tại M, phân giác góc C cắt AB tại N.
a/ Tính AM, MC
b/ Tính MN
c/ Tính tỉ số diện tích của \(\Delta AMN\) và \(\Delta ABC\)
d/ Tính diện tích tam giác MHD
B1): a): +)Ta có csc đường cao BD, CE cắt nhau tại I => BD vg góc vs AC; CE vg góc vs AB
+)Xét tg AEC và tg ADB, có: AEC=AHB=90( BD vg góc vs AC; CE vg góc vs AB )
BAC chung
Do đó: tg AEC ~ tg ADB ( gg)
=> AE/AD= AC/AB=> AE*AB=AD*AC (đpcm)
b) : Gợi ý hoi :)): Kẻ đcao AF xuống BC, sẽ đi qua điểm I; c/m ED//BC=> c/m đc tg AED~tg ABC theo trường hợp cgc, từ đó ta sẽ có đc 2 góc AED = ABC ( vì 2 tg trên ~ vs nhau )
a, Vì BM là phân giác ^B nên : \(\frac{AB}{BC}=\frac{AM}{MC}\)( t/c )
\(\Rightarrow\frac{MC}{BC}=\frac{AM}{AB}\)( tỉ lệ thức )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{MC}{BC}=\frac{AM}{AB}=\frac{MC+AM}{BC+AB}=\frac{5}{11}\)
\(\Rightarrow\frac{MC}{6}=\frac{5}{11}\Rightarrow MC=\frac{30}{11}\)cm
\(\Rightarrow\frac{AM}{5}=\frac{5}{11}\Rightarrow AM=\frac{25}{11}\)cm
b, Vì MN // BC theo hệ quả Ta lét :
\(\frac{MN}{BC}=\frac{AM}{AC}\Rightarrow MN=\frac{AM.BC}{AC}=\frac{\frac{25}{11}.6}{5}=\frac{30}{11}\)cm
c, Ta có : \(\frac{\Delta_{AMN}}{\Delta_{ABC}}=\left(\frac{AM}{AB}\right)^2=\left(\frac{25}{\frac{11}{5}}\right)^2=\frac{25}{121}\)
d, Ko có H :>
Cho \(\Delta ABC\) vuông tại A , đường cao AH . Biết BC = 5 cm , BH = 1,8 cm . Gọi M là trung điểm của BC , đường trung trực của BC cắt AC tại D .
a) Tính AB , AH
b) Tính tỉ số diện tích của \(\Delta DMC\) và \(\Delta ABC\)
c) Chứng minh : AC . DC = \(\frac{1}{2}BC^2\)
d) Tính diện tích tứ giác ADMB
\(\text{Hình bạn tự vẽ ^_^}\)
\(\text{a)Ta có: }AB^2=HB.BC=1,8.5=9\)
\(\Rightarrow AB=\sqrt{9}=3\left(\text{cm}\right)\)
\(\text{Lại có: }HC=BC-BH=5-1,8=3,2\left(\text{cm}\right)\)
\(\text{và: }AH^2=BH.CH=1,8.3,2=5,76\)
\(\Rightarrow AH=\sqrt{5,76}=2,4\left(\text{cm}\right)\)
\(\text{b) vì M là trung điểm BC nên }BM=CM=\frac{BC}{2}=\frac{5}{2}=2,5\left(\text{cm}\right)\)
\(\text{Ta lại có: }AC^2=CH.BC=3,2.5=16\)
\(\Rightarrow AC=\sqrt{16}=4\left(\text{cm}\right)\)
\(\text{Xét }\Delta DMC\text{ và }\Delta BAC\text{ có:}\)
\(\widehat{DMC}=\widehat{BAC}=90^o\)
\(\widehat{C}\text{ là góc chung}\)
\(\text{ }\Rightarrow\Delta DMC\text{ đồng dạng với }\Delta BAC\)
\(\Rightarrow\frac{DM}{AB}=\frac{DC}{BC}=\frac{CM}{AC}=\frac{2,5}{4}=0,625\left(\text{Tỉ số đồng dạng}\right)\)
\(\text{Vậy }\frac{S_{DMC}}{S_{BAC}}=\left(0,625\right)^2=\frac{25}{64}\)
a, \(AB=\sqrt{BH\cdot BC}=\sqrt{1,8\cdot5}=3\)
\(AH=\sqrt{AB^2-BH^2}=\sqrt{3^2-1,8^2}=2,4\)
b, \(\frac{S_{ABC}}{S_{DMC}}=\frac{MC^2}{BC^2}=\frac{1}{4}\)
c,\(\Delta ABC~\Delta MDC\Rightarrow\frac{BC}{DC}=\frac{AC}{MC}\Rightarrow AC\cdot CD=\frac{1}{2}BC^2\)
d,Cái này bạn tự tính nhá
Mk hơi lười nên làm hơi tắt có j thông cảm mk nha
Cho tam giác ABC vuông tại A, trung tuyến AM, biết \(\Delta ABM\) là tam giác đều có cạnh 2cm.
a,Tính độ dài AC và đường cao AH của \(\Delta ABC\)
b,Tính diện tích của \(\Delta ABC\)
a) Vì AM là trung tuyến của \(\Delta ABC\)tại A \(\Rightarrow MB=MC\)
Vì \(\Delta ABM\)là tam giác đều có cạnh là 2cm\(\Rightarrow AB=AM=BM=2cm\)
Do đó độ dài cạnh BC là : \(2+2=4cm\)
Áp dụng định lý Py-ta-go trong tam giác vuông ABC ta được :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AC^2=BC^2-AB^2\)
\(\Leftrightarrow AC^2=4^2-2^2=16-4=12\)
\(\Rightarrow AC=\sqrt{12}\left(cm\right)\)
b) Diện tích \(\Delta ABC\)là : \(\frac{1}{2}\left(AB.AC\right)=\frac{2.\sqrt{12}}{2}=\sqrt{12}\left(cm^2\right)\)