Những câu hỏi liên quan
TN
Xem chi tiết
PM
16 tháng 11 2016 lúc 22:35

m=1 hoặc -1

Bình luận (0)
ND
Xem chi tiết
PB
Xem chi tiết
CT
22 tháng 2 2017 lúc 13:34

Ta có D = m − 1 2 m = m 2 + 2 > 0 , ∀ m ∈ R nên hệ phương trình luôn có nghiệm duy nhất

D x = 3 − 1 9 m = 3 m + 9 ;   D y = m 3 2 9 = 9 m − 6

Vậy hệ luôn có nghiệm duy nhất là: x = 3 m + 9 m 2 + 2 y = 9 m − 6 m 2 + 2

Ta có:  A = 3 x − y = 3 3 m + 9 m 2 + 2 − 9 m − 6 m 2 + 2 = 33 m 2 + 2

Vì m Z nên để A nguyên thì  m 2 + 2  là ước của 33 mà  m 2 + 2 ≥ 2  nên ta có các trường hợp sau:

Mà m nguyên dương nên  m ∈ 1 ; 3

Vậy có 2 giá trị nguyên dương của m để A nguyên.

Đáp án cần chọn là: B

Bình luận (0)
HY
Xem chi tiết
KL
3 tháng 2 2021 lúc 19:50

Thao m =3 và HPT ta có: 

\(\left\{{}\begin{matrix}\left(3-1\right)x+y=3\\x+\left(3-1\right)y=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+y=3\\x+2y=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}4x+2y=6\\x+2y=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}4x+2y=6\\3x=4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

Vậy với m=3 thì HPT có nghiệm (x;y) = (\(\dfrac{4}{3};\dfrac{1}{3}\))

Bình luận (0)
NT
3 tháng 2 2021 lúc 19:51

a) Thay m=3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}2x+y=3\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=3\\2x+4y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-1\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\2x=3-y=3-\dfrac{1}{3}=\dfrac{8}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

Bình luận (0)
KL
3 tháng 2 2021 lúc 20:44

b) \(\left\{{}\begin{matrix}\left(m-1\right)x+y=m\\x+\left(m-1\right)y=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2-\left(m-1\right)y\\\left(m-1\right)\left(2-\left(m-1\right)y\right)+y=m\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}x=2-my+y\\\left(m-1\right)\left(2-my+y\right)+y=m\left(1\right)\end{matrix}\right.\)

 

Từ (1) ta có: 

\(\left(m-1\right)\left(2-my+y\right)=y=m\)

\(2m-m^2y+my-2+my-y+y=m\)

\(-m^2y+2my=-2m+2+m\)

\(my\left(-m+2\right)=-2m+2+m\) (2)

Trường hợp 1: 

\(-m+2=0\)

⇔m= \(\mp\)2

*Thay m=2 vào (2) ta có: 0y=0 ⇒m=2 (chọn)

*Thay m=-2 và (2) ta có: 0y= -4 ⇒m= -2 (loại)

Trường hợp 2:

-m+2 \(\ne0\)

⇔m\(\ne\) 2

⇒HPT có nghiệm duy nhất: 

 

\(my=\dfrac{-2m+2+m}{-m+2}\)

\(y=\dfrac{-2m+2+m}{-m+2}.\dfrac{1}{m}\)

\(y=\dfrac{-2m+2+m}{-m^2+2m}\)

\(x=2-m.\dfrac{-2m+2+m}{-m^2+2m}+\dfrac{-2m+2+m}{-m^2+2m}\)

Theo bài ra ta có: 

\(2x^2-7y=1\)

\(2.\left(2-m.\dfrac{-2m+2+m}{-m^2+2m}+\dfrac{-2m+2+m}{-m^2+2m}\right)^2-7\left(\dfrac{-2m+2+m}{-m^2+2m}\right)=1\)

\(2.\left(2-\dfrac{2m^2-2m-m^2}{-m^2+2m}+\dfrac{-2m+2+m}{-m^2+2m}\right)^2-\dfrac{14m-14-7m}{-m^2+2m}=1\)

Có gì bạn giải nốt nha, phương trình cũng "đơn giản" rồi haha

Mình bấm máy tính Casio nó ra kết quả m=1 

nên với m =1 thì Thỏa mãn yêu cầu đề bài

:))))))))))

 

Bình luận (1)
HN
Xem chi tiết
DH
22 tháng 11 2021 lúc 13:55

a) \(\hept{\begin{cases}3x+2y=4\\2x-y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}3x+2y=4\\4x-2y=2m\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{2m+4}{7}\\y=2x-m\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{2m+4}{7}\\y=\frac{8-3m}{7}\end{cases}}\)

Để phương trình có nghiệm \(\left(x,y\right)\)với \(x< 1,y< 1\)thì

\(\hept{\begin{cases}\frac{2m+4}{7}< 1\\\frac{8-3m}{7}< 1\end{cases}}\Leftrightarrow\hept{\begin{cases}2m< 3\\3m>1\end{cases}}\Leftrightarrow\frac{1}{3}< m< \frac{2}{3}\).

b) Để ba đường thẳng đã cho đồng quy thì: 

\(\frac{2m+4}{7}+2.\frac{8-3m}{7}=3\Leftrightarrow m=-\frac{1}{4}\).

Bình luận (0)
 Khách vãng lai đã xóa
LV
Xem chi tiết
H24
Xem chi tiết
NH
26 tháng 1 2021 lúc 20:42

Bài này có trong sbt toán 8 tập 2 mà!

Bình luận (7)
TG
26 tháng 1 2021 lúc 20:49

a)  f(x;y) = 0, nhận x = -3 làm nghiệm

<=> [2. (-3) - 3y + 7][3. (-3) + 2y -1] = 0

\(\Leftrightarrow\left[{}\begin{matrix}-6-3y+7=0\\-9+2y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-3y=0+6-7=-1\\2y=0+9+1=10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{1}{3}\\y=5\end{matrix}\right.\)

Vậy:.........

b)  f(x;y) = 0; nhận y = 2 làm nghiệm.

\(\Leftrightarrow\left(2x-3.2+7\right)\left(3x+2.2-1\right)=0\)

\(\Leftrightarrow\left(2x-6+7\right)\left(3x+4-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6+7=0\\3x+4-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0+6-7=-1\\3x=0-4+1=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-1\end{matrix}\right.\)

Vậy...........

 

Bình luận (1)
NH
26 tháng 1 2021 lúc 21:04

limdimlimdimhết nói nổi luôn

Bình luận (1)
NT
Xem chi tiết
VT
18 tháng 5 2018 lúc 21:51

hình như thiếu đề

Bình luận (0)
NT
18 tháng 5 2018 lúc 21:52

còn câu a, mà mình giải rồi nhé bạn 

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 12 2018 lúc 6:57

Phương trình f(x;y) = 0 ⇔ (2x – 3y + 7)(3x + 2y – 1) = 0 nhận x = -3 làm nghiệm nên ta có:

[2(-3) – 3y + 7][3(-3) + 2y – 1] = 0

⇔ (- 6 – 3y + 7)(- 9 + 2y – 1) = 0

⇔ (1 – 3y)(2y – 10) = 0 ⇔ 1 – 3y = 0 hoặc 2y – 10 = 0

1 – 3y = 0 ⇔ y = 1/3

2y – 10 = 0 ⇔ y = 5

Vậy phương trình (2x – 3y + 7)(3x + 2y – 1) = 0 nhận x = -3 làm nghiệm thì y = 1/3 hoặc y = 5.

Bình luận (0)