Cho tam giác ABC cân tại A.Tính số đo các góc B và C khi A=a⁰
cho tam giác ABC cân tại A, có góc C = 4.góc A.Tính số đo góc B
Chỉ cần viết luôn đáp án thôi
a, cho tam giác ABC cân tại A.Tính các góc ở đáy B và C, biết góc ở đáy bằng 45 độ b, cho tam giác MNP cân tại P.Tính góc ở đỉnh P biết góc ở đáy bằng 45 độ
a: \(\widehat{B}=\widehat{C}=45^0\)
b: \(\widehat{P}=180^0-2\cdot45^0=90^0\)
Cho tam giác ABC cân tại A và có B 2A . Đường phân giác của góc B cắt AC tại D. a/Tính số đo các góc của tam giác ABC. b/Chứng minh DA = DB. c/Chứng minh DA = BC
a: \(\widehat{A}=36^0\)
\(\widehat{B}=\widehat{C}=72^0\)
b: \(\widehat{ABD}=\dfrac{72^0}{2}=36^0\)
mà \(\widehat{BAD}=36^0\)
nên \(\widehat{ABD}=\widehat{BAD}\)
=>ΔBAD cân tại D
hay DA=DB
a: ˆA=360A^=360
ˆB=ˆC=720B^=C^=720
b:
tam giác abc cân tại atam giác abc cân tại a cótam giác abc cân tại atam giác abc cân tại a có â=40tam giác abc cân tại atam giác abc cân tại a có tam giác abc cân tại atam giác abc cân tại a có â=40 khi đó số đo của góc b bằng
a,100 độ b,50 độ c, 70 độtam giác abc cân tại atam giác abc cân tại a cótam giác abc cân tại atam giác abc cân tại a có â=40tam giác abc cân tại atam giác abc cân tại a có tam giác abc cân tại atam giác abc cân tại a có â=40 khi đó số đo của góc b bằng
a,100 độ b,50 độ c, 70 độ d, 40 độ
Cho tam giác ABC cân tại A và có B 2A . Đường phân giác của góc B cắt AC tại D. a/Tính số đo các góc của tam giác ABC. b/Chứng minh DA = DB. c/Chứng minh DA = BC
mình cần câu c
c: Xét ΔDBC có \(\widehat{DBC}=\widehat{C}\)
nên ΔDBC cân tại D
=>DB=BC
=>DA=BC
Bài 1. Cho tam giác ABC cân tại A có Â = 80o
a) Tính số đo các góc B, C của tam giác ABC
b) Tia phân giác của góc B cắt AC tại D. Tính số đo góc ADB.
Bài 2. Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC (D ∈ AC), CE vuông góc với AB (E ∈ AB),
BD và CE cắt nhau tại I. M là trung điểm BC. Chứng minh:
a) ∆BDC = CEB.
b) Tam giác IBC là tam giác cân.
c) IE = ID.
d) Ba điểm A, I, M thẳng hàng.
cho tam giác ABC cân tại A.Tính các góc còn lại của tam giác ABC nếu:
a, góc A=40 độ
b, góc B=50 độ
c, góc C=60 độ
Các bạn hộ mk nha !
a, Vì △ABC cân tại A => \(\widehat{B}=\widehat{C}=\frac{180^o-\widehat{A}}{2}=\frac{180^o-40^o}{2}=\frac{140^o}{2}=70^o\)
b, Vì △ABC cân tại A => \(\widehat{B}=\widehat{C}=50^o\)
Xét △ABC có: \(\widehat{B}+\widehat{C}+\widehat{A}=180^o\)(tổng 3 góc trong tam giác)
\(\Rightarrow50^o+50^o+\widehat{A}=180^o\)\(\Rightarrow\widehat{A}=80^o\)
c, Vì △ABC cân tại A => \(\widehat{B}=\widehat{C}=60^o\)
Xét △ABC có: \(\widehat{B}+\widehat{C}+\widehat{A}=180^o\)(tổng 3 góc trong tam giác)
\(\Rightarrow60^o+60^o+\widehat{A}=180^o\)\(\Rightarrow\widehat{A}=60^o\)
Cho tam giác AMN cân tại A. Trên cạnh đáy MN lấy 2 đm B và C s cho MB=NC.
a) Cm tam giác ABC cân.
b) Vẽ MH vuông góc với AB. NK vuông góc với AC. Cm tam giác MBH= tam giác NCK.
c) Các đường thẳng HM và KN cắt nhau tại O. Tam giác OBC là tam giác j? Tại sao?
d) Khi BAC= 60° và BM=CN=BC, tinhtính số đo các góc của tam giác AMN và xác định dạng của tam giác OBC.
Ad olm hay ai đó giỏi toán giúp với
a,xét tam giác AMB và ANC có:MB=CN(gt)
tam giác AMN cân tại A(gt)=>AM=AN(đn)và góc AMN=góc ANM(tc)
=>tam giác AMB =tam giác ANC(c-g-c)
=>tam giác ABC cân tại A
b,tam giác AMB=tam giác ANC(cm trên)
góc ABM=góc ACN
góc ABM+góc MBH=180°
góc ACN +góc NCK=180°
=>góc MBH=góc NCK
xét tam giác MBH và NCK có MB=CN(gt)
góc MHB= góc CKN (MH vuông góc AB.NK vuông góc AC)(gt)
=>tam giác MBH=tam giác NCK (cạnh huyền-góc nhọn)
c, tam giác MBH= tam giác NCK (cm câu b)
=>góc BMH= góc CNK
=> tam giác MNO cân tại O
#Thiên#
Bài 5: Cho tam giác ABC vuông cân tại A. Trên tia đối của tia BA lấy điểm D sao cho DB = BC. Tính số đo các góc của tam giác ACD
Bài6:TamgiácABCcântạiBcóBˆ =100 đôn.LấycácđiểmDvàEtrêncạnhAC sao cho AD = BA, CE = CB. Tính số đo góc DBE?
Bài 7: Cho tam giác ABC cân tại A. Vẽ BH vuông góc với AC tại H. Chứng minh rằng góc BAC có số đo gấp đôi số đo góc CBH.
Bài 8: Cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Gọi I là giao điểm của BE và CD.
a) Chứng minh tam giác IBC và tam giác IDE là các tam giác cân.
b) Chứng minh BC // DE.
c) Gọi M là trung điểm của BC. Chứng minh ba điểm A, M, I thẳng hàng.
Bài 5:
Tgiac ABC vuông cân tại A => góc CBA = 45 độ
Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB
Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC
=> góc D = 45/2 = 22,5 độ
và góc ACD = 22,5 + 45 = 67,5 độ
Vậy số đo các góc của tgiac ACD là ...
Bài 6:
Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ
Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ
cmtt với tgiac CBE => góc DEB = 70 độ
=> góc DBE = 180-70-70 = 40 độ
Bài 7:
Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)
Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C
=> đpcm
Bài 8: mai làm hihi
bài này dễ sao không biết
Bài 8 :
Tự vẽ hình nhé ?
a) Vì ∆ABC cân tại A (GT)
=> ∠ABC = ∠ACB (ĐN)
Mà ∠ABC + ∠DBC = 180o (2 góc kề bù)
∠ACB + ∠ECB = 180o (2 góc kề bù)
=> ∠DBC = ∠ECB (1)
Xét ∆BCD và ∆CBE có :
BD = CE (GT)
∠DBC = ∠ECB (Theo (1))
BC chung
=> ∆BCD = ∆CBE (c.g.c) (2)
=> ∠BCD = ∠CBE (2 góc tương ứng)
Hay ∠BCI = ∠CBI
Xét ∆IBC có : ∠BCI = ∠CBI (cmt)
=> ∆IBC cân tại I (định lý)
=> IB = IC (ĐN) (3)
Từ (2) => DC = EB (2 cạnh tương ứng)
Mà ID + IC = DC, IE + IB = EB
=> ID = IE
Xét ∆IDE có : ID = IE (cmt)
=> ∆IDE cân tại I (ĐN)
b) Ta có : AB + BD = AD
Mà AC + CE = AE
AB = AC (GT)
BD = CE (GT)
=> AD = AE
Xét ∆ADE có : AD = AE (cmt)
=> ∆ADE cân tại A (ĐN)
=> ∠ADE = \(\frac{180^o-\widehat{DAE}}{2}\)(4)
Vì ∆ABC cân tại A (GT)
=> ∠ABC = \(\frac{180^o-\widehat{BAC}}{2}\)(5)
Từ (4), (5) => ∠ADE = ∠ABC, mà 2 góc này ở vị trí đồng vị
=> BC // DE (DHNB)
c) Xét ∆ABM và ∆ACM có :
AM chung
AB = AC (GT)
MB = MC (do M là trung điểm của BC)
=> ∆ABM = ∆ACM (c.c.c)
=> ∠AMB = ∠AMC (2 góc tương ứng)
Mà ∠AMB + ∠AMC = 180o (2 góc kề bù)
=> ∠AMB = ∠AMC = 180o : 2 = 90o
Sau đó chứng minh ∆BIM = ∆CIM theo c.c.c bằng 3 yếu tố MI chung, MB = MC, IB = IC (Theo (3))
Rồi => ∠IMB = ∠IMC (tương ứng)
Mà ∠IMB + ∠IMC = 180o (kề bù)
=> ..... (làm như phần trên)
Ta có : ∠AMB + ∠IMB = ∠AMI
Mà ∠AMB = 90o (cmt)
∠IMB = 90o (cmt)
=> 90o + 90o = ∠AMI
=> ∠AMI = 180o
=> A, M, I thẳng hàng (đpcm)
Vậy .....