tim x
1/(1.3)+1/(3.5)+1/(5.7)+..........+1/(x.(x+2)=1005/2011
luu y:/ la phan;.la nhan
Tìm x biết 1/1.3+1/3.5+1/5.7+...+1/x.(x+2)=1005/2011
Gọi \(A=\frac{1005}{2011}\)
A=1/3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)
A=1/1.3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)
A . 2=2/1.3 + 2/3.5 + 2/5.7 +......................+2/x.(x+2)
A . 2=1/1-1/3+1/3-1/5+1/5-1/7+..............+1/x-1/x+2
A . 2=1/1+(1/3-1/3)+(1/5-1/5)+..............+(1/x-1/x)-1/x+2
A . 2=1/1-1/x+2
Suy gia:1005/2011 . 2=1/1-1/x+2
2010/2011 =1/1-1/x+2
1/x+2 =1/1-2010/2011
1/x+2 =1/2011
Suy gia:x+2=2011
x =2011-2
x =2009
Tìm x
1 phần 1.3 + 1 phần 3.5+ 1 phần 5.7+..+1 phần x+(X+2)=1005 phần 2011
Tìm x, biết : \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{1005}{2011}\)
\(\dfrac{1}{1.3}\)+ \(\dfrac{1}{3.5}\)+ \(\dfrac{1}{5.7}\)+....+\(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{1005}{2011}\)
1- \(\dfrac{1}{3}\)+ \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\)+ \(\dfrac{1}{5}\)- \(\dfrac{1}{7}\)+....+\(\dfrac{1}{x}\)- \(\dfrac{1}{x+1}\)= \(\dfrac{1005}{2011}\)
1- \(\dfrac{1}{x+1}\)= \(\dfrac{1005}{2011}\)
\(\dfrac{1}{x+1}\)= 1- \(\dfrac{1005}{2011}\)
\(\dfrac{1}{x+1}\)= \(\dfrac{1006}{2011}\)
=> x +1= 2011
=> x= 2011-1
=> x=2010
Bài này mk lm đại nha bn ! Cs j sai mong bn bỏ qua .
tim x biet 1/1.3 + 1/3.5+1/5.7+...+1/x.(x+2)=20/41
Tim x, bt:\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{x\left(x+2\right)}=\dfrac{8}{17}\)
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{x\left(x+2\right)}=\dfrac{8}{17}\)
\(\Rightarrow\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{x\left(x+2\right)}\right)=\dfrac{8}{17}\)
\(\Rightarrow\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=\dfrac{8}{17}\)
\(\Rightarrow\dfrac{1}{2}\left(1-\dfrac{1}{x+2}\right)=\dfrac{8}{17}\)
\(\Rightarrow1-\dfrac{1}{x+2}=\dfrac{8}{17}:\dfrac{1}{2}=\dfrac{16}{17}\)
\(\Rightarrow\dfrac{1}{x+2}=1-\dfrac{16}{17}=\dfrac{1}{17}\)
\(\Rightarrow x+2=17\rightarrow x=15\)
Vậy x = 15
a) Tìm một số biết rằng \(\frac{5}{8}\)của số đó bằng\(\frac{2}{3}\)của -420
b) Tìm x biết : \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x\left(x+2\right)}=\frac{1005}{2011}\)
a, 2/3 của -420 là :
-420 x 2/3 = -280
Số cần tìm là :
-280 x 5/8 = -175
Vậy số cần tìm là -175
b, 1/1.3 + 1/3.5 + 1/5.7 + ... + 1/x ( x + 2 ) = 1005 / 2011
1/2 x ( 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/ ( x ( x + 2 ) = 1005 / 2011
1/2 x ( 1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/x - 1/ x + 2 ) = 1005 / 2011
1/2 x ( 1 - 1/ x + 2 ) = 1005 / 2011
1 - 1 / x + 2 = 1005 / 2011 : 1/2
1 - 1 / x + 2 = 2010 / 2011
x + 2 / x + 2 - 1 / x + 2 = 2010 / 2011
x + 2 - 1 / x + 2 = 2010 / 2011
x + 1 / x + 2 = 2010 / 2011
+> x + 1 = 2010
x = 2010 - 1
x = 2009
+> x + 2 = 2011
x = 2011 - 2
x = 2009
Vậy x = 2009
Tk nha Đúng đó !!
1/1.3+1/3.5+1/5.7+...+1/(2.x-1)(2.x+1)=49/99
=>2/1*3+2/3*5+...+2/(2x-1)(2x+1)=98/99
=>1-1/3+1/3-1/5+...+1/(2x-1)-1/(2x+1)=98/99
=>1-1/(2x+1)=98/99
=>1/(2x+1)=1/99
=>2x+1=99
=>x=49
1/1.3+1/3.5+1/5.7+......+1/x.(x+2)=5/11
Có:
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{x.\left(x+2\right)}=\dfrac{5}{11}\)
\(\Rightarrow\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=\dfrac{5}{11}\)
\(\Rightarrow\dfrac{1}{2}.\left(1-0-0-0...-0-\dfrac{1}{x+2}\right)=\dfrac{5}{11}\)
\(\Rightarrow\dfrac{1}{2}.\left(1-\dfrac{1}{x+2}\right)=\dfrac{5}{11}\)
\(\Rightarrow1-\dfrac{1}{x+2}=\dfrac{5}{11}:\dfrac{1}{2}=\dfrac{10}{11}\)
\(\Rightarrow\dfrac{1}{x+2}=1-\dfrac{10}{11}\)
\(\Rightarrow\dfrac{1}{x+2}=\dfrac{1}{11}\)
\(\Rightarrow x+2=11\)
\(\Rightarrow x=11-2=9\)
Vậy x = 9.
Chúc bạn học tốt!
1/1.3 + 1/3.5 + 1/5.7 + ... +1/x.(x+2)
= 1/2.(1/1 - 1/3) + 1/2.(1/3 - 1/5) + 1/2.(1/5 - 1/7) + ... + 1/2.(1/x -1/x+2)
= 1/2.(1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/x - 1/x+2 )
= 1/2.(1/1 - 0 - 1/x+2 )
= 1/2 . ( 1/1 - 1/x+2 )
= 1/2 . ( x+2/x+2 - 1/x+2 )
= 1/2 . x+1/x+2
Mà 1/1.3 + 1/3.5 + 1/5.7 + ... +1/x.(x+2) = 5/11
=> 1/2 . x+1/x+2 = 5/11
=> x+1/x+2 = 5/11 : 1/2
=> x+1/x+2 = 10/11
=> x+1/x+2-1 = 10/11-1
=> x+1/x+1 = 10/10
=> x + 1 = 10
=> x = 10 - 1
=> x = 9
Vậy x = 9
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{x.\left(x+2\right)}=\dfrac{5}{11}\)
\(\dfrac{1.2}{2.1.3}+\dfrac{1.2}{2.3.5}+\dfrac{1.2}{2.5.7}+...+\dfrac{1.2}{2x\left(x+2\right)}\dfrac{5}{11}\)\(\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{x\left(x+2\right)}\right)=\dfrac{5}{11}\)\(\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=\dfrac{5}{11}\)\(\dfrac{1}{2}\left(1+0+0+...+0+\dfrac{1}{x-2}\right)=\dfrac{5}{11}\)
\(\dfrac{1}{2}\left(1-\dfrac{1}{x-2}\right)=\dfrac{5}{11}\)
\(1-\dfrac{1}{x-2}=\dfrac{5}{11}:\dfrac{1}{2}\)
\(1-\dfrac{1}{x-2}=\dfrac{10}{11}\)
\(\dfrac{1}{x-2}=1-\dfrac{10}{11}\)
\(\dfrac{1}{x-2}=\dfrac{1}{11}\)
\(\Rightarrow x-2=11\)
\(x=11+2\)
\(x=13\)
Vậy x=13
1/1.3 + 1/3.5 + 1/5.7 +...+ 1/x.(x+2) = 20/41
Ta có:
1/1.3 + 1/3.5 + 1/5.7 + ... + 1/x.(x+2) = 1/2.(2/1.3 + 2/3.5 + 2/5.7 + ... + 2/x.(x+2)
= 1/2.(1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/x - 1/x+2
= 1/2.(1 - 1/x+2)
=> 1/2.(1 - 1/x+2) = 20/41
1 - 1/x+ 2 = 20/41 : 1/2
1 - 1/x+2 = 40/41
1/x+2 = 1/41
=>x + 2 = 41
=>x = 41 - 2
=>x = 39
Vậy x = 39
Ủng hộ nha
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)
=> \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x.\left(x+2\right)}=2.\frac{20}{41}\)
=> \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{40}{41}\)
=> \(1-\frac{1}{x+2}=\frac{40}{41}\)
=> \(\frac{1}{x+2}=1-\frac{40}{41}\)
=> \(\frac{1}{x+2}=\frac{1}{41}\)
=> \(x+2=41\)
=> \(x=41-2=39\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)
\(\Leftrightarrow\)\(\frac{2}{1.3}+\frac{2}{3.4}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}=\frac{40}{41}\)
\(\Leftrightarrow\)\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{40}{41}\)
\(\Leftrightarrow\)\(1-\frac{1}{x+2}=\frac{40}{41}\)
\(\Leftrightarrow\)\(\frac{1}{x+2}=1-\frac{40}{41}\)
\(\Leftrightarrow\)\(\frac{1}{x+2}=\frac{1}{41}\)
\(\Leftrightarrow\)\(x+2=41\)
\(\Leftrightarrow\)\(x=41-2\)
\(\Leftrightarrow\)\(x=39\)