C=1+3+9+...+3100. Rút gọn tổng trên
rút gọn :
A=1+3+32+33+....+3100
B=1+12+24+...+2100
C=1-3+32-33+...+3100
A = 1 + 3 + 32 + 33 + ... + 3100
3A = 3 + 32 + 33 +34+ .... + 3101
3A - A = (3 + 32 + 34 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)
2A = 3 + 32 + 34 + ... + 3101 - 1 - 3 - 32 - 33 - ... - 3100
2A = (3 - 3) + (32 - 32) + ... + (3100 - 3100) + (3101 - 1)
2A = 3101 - 1
A = \(\dfrac{3^{101}-1}{2}\)
Rút gọn 3100-399+398-397+...+32-3+1
\(A=3^{100}-3^{99}+3^{98}-...-3+1\\ \Rightarrow\dfrac{1}{3}A=3^{99}-3^{98}+3^{97}-...-1+\dfrac{1}{3}\\ \Rightarrow\dfrac{4}{3}A=3^{100}+\dfrac{1}{3}\\ \Rightarrow A=\dfrac{3^{101}}{4}+\dfrac{1}{4}\)
thu gọn tổng sau
B=1+3+32+33+...+3100+3101
\(B=1+3+3^2+3^3+...+3^{100}+3^{101}\)
\(\Rightarrow3B=3+3^2+3^3+3^4+...+3^{101}+3^{102}\)
\(\Rightarrow3B-B=3^{102}-1\)
\(\Leftrightarrow2B=3^{102}-1\)
\(\Leftrightarrow B=\dfrac{3^{102}-1}{2}\)
a) Rút gọn tổng A = 20 + 21 + 22 + 23 + .... 250
b) Rút gọn tổng B = 5 + 52 + 53 +..... +599+ 5100
c) Rút gọn tổng C = 3 - 32 + 33 - 34 .....+ 32007 - 32008 + 32009 - 32010
d) Rút gọn tổng S100 = 5 + 5 x 9 + 5 x 92 + 5 x 93+ ......5 x 999
\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)
\(2A=2+2^2+2^3+...+2^{51}\)
\(2A-A=A=2^{51}-2^0\)
\(B=5+5^2+5^3+...+5^{99}+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)
\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)
\(3C+C=4C=3^{2011}+3\)
\(C=\frac{3^{2011}+3}{4}\)
\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)
\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)
\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)
\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)
\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)
Đúng 0
Bình luận (0)
Thu gọn các tổng sau :
A = 1+.3 + 32+ 33+...+3100....
B = 1+4+42+43+....+450
2A = 3A - A = (3 + 32 + 33 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)
2A = 3101 - 1
A = \(\frac{3^{101}-1}{2}\)
3B = 4B - B = (4 + 42 + ... + 451) - (1 + 4 + 42 + ... + 450)
3B = 451 - 1
B = \(\frac{4^{51}-1}{3}\)
2A = 3A - A = ( 3 + 32 + 33 + ... + 3101 ) - ( 1 + 3 + 32 + 33 + ... + 3100 )
2A = 3101 - 1
A =\(3^{101}-1\): 2
3B = 4B - B = ( 4 + 42 + ... + 451) - ( 1 + 4 + 42 +...+ 450 )
3B = 451 - 1
B = 451 - 1 : 3
Thu gọn tổng sau :
A = 1+.3+32+33+...+3100
B = 1+4+42+43+....+450
GIÚP !!!
A=1+3+32+...+3100
3A=3+32+33+...+3101
=>3A+1=1+3+32+...+3100+3101=A+3101
=>3A-A=3101-1
2A=3101-1
A=(3101-1)/2
B=1+4+42+...+450
4B=4+42+...+451
4B+1=1+4+42+...+450+451=B+451
=>4B-B=451-1
3B=451-1
B=(451-1)/3
A=\(\frac{3^{101}-1}{2}\)
B=\(\frac{4^{51}-1}{3}\)
a) Thu gọn tổng sau A = 1 + 2 + 22 + 23 + ….+ 219 + 220. Tìm x biết A + 1 = 2x
b) Cho B = 1 + 3 + 32 + 33+ …. + 399 + 3100.Tìm x biết 2B + 1 = 3x+1
a: Tổng các số hạng là:
\(\dfrac{\left(220+1\right)\cdot220}{2}=24310\)
Ta có: A+1=2x
\(\Leftrightarrow2x=24311\)
hay \(x=\dfrac{24311}{2}\)
thu gọn tổng sau
D=3100+3101+3102+....+3149+3150
\(D=3^{100}+3^{101}+...+3^{149}+3^{150}\)
nên \(3D=3^{101}+3^{102}+...+3^{150}+3^{151}\)
\(\Leftrightarrow2\cdot D=3^{151}-3^{100}\)
hay \(D=\dfrac{3^{151}-3^{100}}{2}\)
\(3D=3^{101}+3^{102}+3^{103}+...+3^{150}+3^{151}\\ 3D-D=3^{151}-3^{100}\\ 2D=3^{151}-3^{100}\\ D=\dfrac{3^{151}-3^{100}}{2}\)
Cho A = 31 + 32 + 33 + 34 + ... + 399 + 3100
a) Rút gọn A
b) Chứng tỏ rằng: A chia hết cho 40
a, A = 31 + 32 + 33 + 34 +...+ 399 + 3100
3A = 3(31 + 32 + 33 + 34 +...+ 399 + 3100)
3A = 32 + 33 + 34 + 35 +...+ 3100 + 3101
3A - A = (32 + 33 + 34 + 35 +...+ 3100 + 3101) - (31 + 32 + 33 + 34 +...+ 399 + 3100)
2A = 3101 - 31 = 3101 - 3
A = \(\frac{3^{101}-3}{2}\)
b, A = 31 + 32 + 33 + 34 +...+ 399 + 3100
A = (31 + 32 + 33 + 34) +...+ (397 + 398 + 399 + 3100)
A = (31 + 32 + 33 + 34)) +...+ 396(31 + 32 + 33 + 34)
A = 120 +...+ 396.120
A = 120(1 +...+ 396) chia hết cho 40 (ĐPCM)