Những câu hỏi liên quan
NN
Xem chi tiết
DH
16 tháng 12 2015 lúc 21:56

n(2n+7)(7n+7)=14n3 + 63n2 + 49n= 14n(n+1)(n+2) +3.7n(n+1)

Nên tích đó chia hết cho 6

Tick nha Ngô Minh Ngọc

Bình luận (0)
TP
Xem chi tiết
NV
Xem chi tiết
KP
Xem chi tiết
ED
2 tháng 4 2017 lúc 8:43

 vì 1 trong 2 thừa số n và 7n+1 là số chẵn]

=>n.(2n+1)(7n+1) \(⋮\)2

với n có dạng 3k thì n\(⋮\)3

với n có dạng 3k1 thì2n+1\(⋮\)3

với n cá dạng 3k+2 thì 7n+1\(⋮\)3

vậy n\(⋮\)3 với mọi n

Bình luận (0)
H24
2 tháng 4 2017 lúc 8:38

CHÚC BẠN HỌC GIỎI

Bình luận (0)
DH
Xem chi tiết
NH
7 tháng 1 2016 lúc 8:40

n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n

ba số liên tiếp chia hết cho 3

tick minh nha

 

Bình luận (0)
ML
Xem chi tiết
LG
Xem chi tiết
AH
19 tháng 10 2019 lúc 10:10

Lời giải:

* CM $A$ chia hết cho $2$

Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.

Do đó luôn tồn tại 1 trong 2 số là chẵn

$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$

* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:

Nếu $n=3k(k\in\mathbb{Z}$

$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Vậy tóm lại $A\vdots 3(**)$

Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
AH
3 tháng 10 2019 lúc 14:53

Lời giải:

* CM $A$ chia hết cho $2$

Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.

Do đó luôn tồn tại 1 trong 2 số là chẵn

$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$

* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:

Nếu $n=3k(k\in\mathbb{Z}$

$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Vậy tóm lại $A\vdots 3(**)$

Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
LM
Xem chi tiết

a; (n + 10)(n + 15)

+ Nếu n là số chẵn ta có: n + 10 ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2

+ Nếu n là số lẻ ta có: n + 15 là số chẵn 

⇒ (n + 15) ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2 

Từ những lập luận trên ta có:

A = (n + 10)(n + 15) ⋮ 2 ∀ n \(\in\) N

Bình luận (0)
NL
Xem chi tiết
KD
8 tháng 1 2020 lúc 13:28

Ta thấy

n(n + 1)(n + 2) là ba số tự nhiên liên tiếp

Ta có nhận xét:

Tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3

Tổng của hai số tự nhiên liên tiếp luôn chia hết cho 2

=> Tích của ba số tự nhiên liên tiếp luôn chia hết cho 1.2.3 = 6

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
BT
8 tháng 1 2020 lúc 16:49

Với n là số nguyên

+ Ta thấy: \(n\)\(n+1\) là 2 số nguyên liên tiếp

\(\rightarrow\) Có ít nhất 1 số chia hết cho 2

\(n.\left(n+1\right)⋮2\)

+ Ta thấy: \(n,n+1\)\(n+2\) là 3 số nguyên liên tiếp

\(\rightarrow\)Có ít nhất 1 số chia hết cho 2, 1 số chia hết cho 3

\(\left(2;3\right)=1\)

\(\rightarrow n.\left(n+1\right).\left(n+2\right)⋮2.3\)

hay \(n.\left(n+1\right).\left(n+2\right)⋮6\)

+ Ta thấy:\(n\)\(n+1\) là 2 số nguyên liên tiếp

\(\rightarrow\) Có ít nhất 1 số chia hết cho 2

\(\rightarrow n.\left(n+1\right).\left(2n+1\right)⋮2\)

Bình luận (0)
 Khách vãng lai đã xóa