Tìm các cặp số nguyên x,y thỏa mãn 7x+13y=119
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm các số nguyên dương x,y thỏa mãn : 7x^2 + 13y^2 = 1820
Ta có :
1820 = 7 . 13 . 20 nên từ 7x2 + 13y2 = 1820 suy ra x \(⋮\)13 và y \(⋮\)7
đặt x = 13k ; y = 7t ( k, t \(\in\)N* ) , từ 7x2 + 13y2 = 1820 ta có :
7 . 132 . k2 + 13 . 72 . t2 = 1820
nên : 13k2 + 7t2 = 20
suy ra : k2 = 1 ; t2 = 1 vì k,t \(\in\)N* nên k = t = 1 do đó x = 13 , y = 7
Vậy ...
Cho 3 số nguyên tố p, q, r sao cho p^q + q^p = r. Chứng minh rằng trong ba số p, q, r luôn có một số bằng 2.
tìm các cặp số nguyên x,y thảo mãn 7x2 +13y2 =1820
Ta có :
1820 = 7 . 13 . 20 nên từ 7x2 + 13y2 = 1820 suy ra x ⋮⋮13 và y ⋮⋮7
đặt x = 13k ; y = 7t ( k, t ∈∈N* ) , từ 7x2 + 13y2 = 1820 ta có :
7 . 132 . k2 + 13 . 72 . t2 = 1820
nên : 13k2 + 7t2 = 20
suy ra : k2 = 1 ; t2 = 1 vì k,t ∈∈N* nên k = t = 1 do đó x = 13 , y = 7
Vậy ...
Ta có :
1820 = 7 . 13 . 20 nên từ 7x2 + 13y2 = 1820 suy ra x ⋮ 13 và y ⋮ 7
Đặt x = 13k ; y = 7t ( k, t ∈ N* ) , từ 7x2 + 13y2 = 1820 ta có :
7 . 132 . k2 + 13 . 72 . t2 = 1820
nên : 13k2 + 7t2 = 20
suy ra : k2 = 1 ; t2 = 1 vì k,t ∈∈N* nên k = t = 1 do đó x = 13 , y = 7
Vậy x = 13
y = 7
Chúc bạn học tốt nhá
HOLA i'm back
Mình cần trợ giúp mong các bạn giúp mình nhanh chóng ai nhanh nhất mình cho 3 ks (của cả garnet và amethyst)
tìm số nguyên x,y thỏa mãn: 7x+13y=119
GOOD LUCK :)))))
vì \(y\le9\) ta có bảng:
y | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
x | \(\frac{106}{7}\) | \(\frac{93}{7}\) | \(\frac{80}{7}\) | \(\frac{67}{7}\) | \(\frac{54}{7}\) | \(\frac{41}{7}\) | 4 | \(\frac{11}{7}\) | \(\frac{2}{7}\) |
vậy x=4 và y=7 thỏa mãn
x,y cũng có thể là số nguyên âm mà bạn
Tìm cặp số nguyên (x; y) thỏa mãn : 8x + 13y - xy = 106
\(8x+13y-xy=106\)
\(\Rightarrow-x\left(y-8\right)+13\left(y-8\right)=106-104\)
\(\Rightarrow\left(13-x\right)\left(y-8\right)=2\)
Từ đó tìm được x,y
tìm cặp số nguyên x, y thỏa mãn `x^2 +xy-6y^2 +x+13y=17`
Lời giải:
$x^2+xy-6y^2+x+13y=17$
$\Leftrightarrow x^2+x(y+1)-(6y^2-13y+17)=0$
Coi đây là pt bậc 2 ẩn $x$ thì để pt có nghiệm nguyên thì:
$\Delta = (y+1)^2+4(6y^2-13y+17)$ là scp
$\Leftrightarrow 25y^2-50y+69$ là scp
Đặt $25y^2-50y+69=t^2$ với $t$ là số tự nhiên
$\Leftrightarrow (5y-5)^2+44=t^2$
$\Leftrightarrow 44=(t-5y+5)(t+5y-5)$
Đến đây là dạng pt tích đơn giản rồi. Bạn có thể tự giải.
Tìm các cặp x ,y nguyên thỏa mãn. x2 + xy - 6y2 + x + 13y = 17. Giải giúp với ạ !
Lời giải:
$x^2+xy-6y^2+x+13y=17$
$\Leftrightarrow x^2+x(y+1)+(-6y^2+13y-17)=0$
Coi đây là pt bậc 2 ẩn $x$. Để pt có nghiệm nguyên thì:
$\Delta=(y+1)^2-4(-6y^2+13y-17)=t^2$ với $t$ là số tự nhiên
$\Leftrightarrow 25y^2-50y+69=t^2$
$\Leftrightarrow (5y-5)^2+44=t^2$
$\Leftrightarrow 44=t^2-(5y-5)^2=(t-5y+5)(t-5y-5)$
Đến đây là dạng pt tích đơn giản rồi.
Tìm tất cả các cặp số nguyên \(\left(x;y\right)\) thỏa mãn \(3x^2+3xy-17=7x-2y\)
\(3x^2+3xy-17=7x-2y\)
\(\Leftrightarrow3x\left(x+y\right)+2x+2y-9x-17=0\)
\(\Leftrightarrow3x\left(x+y\right)+2\left(x+y\right)-9x-6-11=0\)
\(\Leftrightarrow\left(x+y\right)\left(3x+2\right)-3\left(3x+2\right)=11\)
\(\Leftrightarrow\left(3x+2\right)\left(x+y-3\right)=11\)
\(\Leftrightarrow\left(3x+2\right);\left(x+y-3\right)\in\left\{-1;1;-11;11\right\}\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-7\right);\left(-\dfrac{1}{3};\dfrac{43}{3}\right);\left(-\dfrac{11}{3};\dfrac{17}{3}\right);\left(3;1\right)\right\}\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-7\right);\left(3;1\right)\right\}\left(x;y\inℤ\right)\)
tìm cặp số nguyên x,y thỏa mãn 7x+2xy-3y=7
=>7x+y(2x-3)=7
=>7x-10,5+y(2x-3)=7-10,5
=>(x-1,5)(2y+7)=-3,5
=>(2x-3)(2y+7)=-7
=>\(\left(2x-3;2y+7\right)\in\left\{\left(1;-7\right);\left(-7;1\right);\left(-1;7\right);\left(7;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;-7\right);\left(-2;-3\right);\left(1;0\right);\left(5;-4\right)\right\}\)
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)