Tìm a,b,c biết:\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)và a+2b-c=-12
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm các số hữu tỉ a,b,c biết : \(\frac{a+5}{a-5}=\frac{b+6}{a-6}+\frac{b+4}{b-4}=\frac{c+3}{c-3}\) và 3a-2b+c =3
Các bạn ơi ,giúp mình với .Mình đang cần gấp.RRRRRRRRất gấp!
Bài 1: Tìm a,b,c,d biết a:b:c:d=2:3:4:5 và a+b+c+d= -42
Bài 2: Tìm a,b,c,d biết
a)\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a+2b-3c
b)\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\)và a-b+c= -49
Bài 2: Mình nghĩ câu a là a+2b-3c=-20
a) Ta có: a/2 = b/3 = c/4 = 2b/6 = 3c/12 = a + 2b - 3c/ 2 + 6 - 12 = -20/-4 = 5
a/2 = 5 => a = 2 . 5 = 10
b/3 = 5 => b = 5 . 3 = 15
c/4 = 5 => c = 5 . 4 = 20
Vậy a = 10; b = 15; c = 20
b) Ta có: a/2 = b/3 => a/10 = b/15
b/5 = c/4 => b/15 = c/12
=> a/10 = b/15 = c/12 = a - b + c / 10 - 15 + 12 = -49/7 = -7
a/10 = -7 => a = -7 . 10 = -70
b/15 = -7 => b = -7 . 15 = -105
c/12 = -7 => c = -7 . 12 = -84
Vậy a = -70; b = -105; c = -84.
Bài 1:
Ta có: a:b:c:d = 2:3:4:5
=> a/2 = b/3 = c/4 = d/5 = a+b+c+d/2+3+4+5 = -42/14 = -3
a/2 = -3 => a = -3 . 2 = -6
b/3 = -3 => b = -3 . 3 = -9
c/4 = -3 => c = -3 . 4 = -12
d/5 = -3 => d = -3 . 5 = -15
Vậy a = -6; b = -9; c = -12; d = -15.
Tìm a, b, c biết:
a) \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}=k\)\(\)\(k\)
và \(3a-2b+c=-46\)
b) \(\frac{a}{2}=\frac{b}{5};\frac{b}{3}=\frac{c}{4}\)
và \(a+b-c=12\)
a) \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}=k\)
\(\Rightarrow\hept{\begin{cases}a=2k+1\\b=3k-2\\c=4k+3\end{cases}}\)thay vào \(3a-2b+c=-46\)
\(\Rightarrow3\left(2k+1\right)-2\left(3k-2\right)+4k+3=-46\)
\(\Leftrightarrow6k+3-\left(6k-4\right)+4k+3=-46\)
\(\Leftrightarrow4k+10=-46\Rightarrow4k=-56\Rightarrow k=-14\)
\(\Rightarrow\hept{\begin{cases}a=2.\left(-14\right)+1=-27\\b=3.\left(-14\right)-2=-44\\c=4.\left(-14\right)+3=-53\end{cases}}\)
Vậy \(a=-27;b=-44;c=-53\)
b) \(\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\left(1\right)\)
\(\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}\)
\(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)
\(\Rightarrow\hept{\begin{cases}a=12.6=72\\b=12.15=180\\c=12.20=240\end{cases}}\)
Vậy \(a=72;b=180;c=240\)
a, \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}\)
\(\Rightarrow\frac{3a-3}{6}=\frac{2b+4}{6}=\frac{c-3}{4}=\frac{3a-3-2b-4+c-3}{6-6+4}=\frac{\left(3a-2b+c\right)-\left(3+4+3\right)}{4}=\frac{-46-10}{4}=-14\)
=> \(\hept{\begin{cases}\frac{a-1}{2}=-14\\\frac{b+2}{3}=-14\\\frac{c-3}{4}=-14\end{cases}}\Rightarrow\hept{\begin{cases}a=-27\\b=-44\\c=-53\end{cases}}\)
b) \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\\\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\end{cases}\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)
=> a = 72, b=180, c=240
Tìm các số a,b,c biết \(\frac{a}{b}=\frac{4}{5},\frac{b}{c}=\frac{5}{6}\)và a+2b+c = 100
\(\frac{a}{b}=\frac{4}{5}\Rightarrow\frac{a}{4}=\frac{b}{5}\); \(\frac{b}{c}=\frac{5}{6}\Rightarrow\frac{b}{5}=\frac{c}{6}\)
Suy ra \(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{a+2b+c}{4+2\cdot5+6}=\frac{100}{20}=5\)
\(\Rightarrow a=20;b=25;c=30\)
Tìm a, b, c biết
1) \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và a-2b+3c=35
2) \(\frac{a}{5}=\frac{b}{6};\frac{b}{8}=\frac{c}{7}\) và a+b-c=69
2. Tìm 3 số biết.
a) \(\frac{x}{y}=\frac{y}{8}=\frac{z}{9}\) và x + y + z = 72
b) x : y : z = 5 : 4 : 3 và x +y - z = 18
c) \(\frac{a}{5}=\frac{b}{4}=\frac{c}{7}\) và a + 2b +c = 10
d) \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) và a = 15
e) \(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}\) và a + b = 10
f) \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) và 2a + b - c = -12
g) \(\frac{a}{5}=\frac{b}{6}=\frac{c}{2}\) và 2a + b - 4c = 24
h) \(\frac{a}{2}=\frac{b}{3}=\frac{c}{-7}\) và abc = 366
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y-z}{5+4-3}=\dfrac{18}{6}=3\)
Do đó: x=15; y=12; z=9
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{4}=\dfrac{c}{7}=\dfrac{a+2b+c}{5+2\cdot4+7}=\dfrac{10}{20}=\dfrac{1}{2}\)
Do đó: a=5/2; b=2; c=7/2
e: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{2}=\dfrac{a+b}{4+5}=\dfrac{10}{9}\)
Do đó: a=40/9; b=50/9; c=20/9
f: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2a+b-c}{2\cdot2+3-4}=\dfrac{-12}{3}=-4\)
Do đó: a=-8; b=-12; c=-16
Hệ số tỉ lệ của y đối với x biết x và y tỉ lệ thuận với nhau và khi x=-3 thì y=12. giá trị của a+b+c biết \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) và 2b-c=5
- Vì x và y là 2 đại lượng tỉ lệ thuận :
Nên; y = kx
12 = -3k
=> k = 12 : (-3) = -4
A, Cho 3 số a;b;c thỏa mãn \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)và 3a+2b-c khác 0 . Tính giá trị của biểu thức: \(B=\frac{a+7b-2c}{3a+2b-c}\)
B, Cho 3 số a;b;c thỏa mãn \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)và 3a+2b-c=4 . Tìm các số a;b;c
a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\); \(b=3k\); \(c=5k\)
Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)
b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)
\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)
\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)
\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)
\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)
Do đó: +) \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)
+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)
+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)
Tìm a,b,c biết \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a+2b-3c= -20
Theo t/c dãy tỉ số bằng nhau :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
\(\Rightarrow a=10;b=15;c=20\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{b}{3}=\frac{c}{4}=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\)\(=\frac{a+2b-3c}{2+6-12}=-\frac{20}{-4}=5\)
\(\Rightarrow\hept{\begin{cases}a=5\cdot2=10\\b=5\cdot3=15\\c=5\cdot4=20\end{cases}}\)